A NEW FAMILY OF RATIO-CUM-PRODUCT ESTIMATORS OF POPULATION MEAN FOR TWO CONCOMITANT VARIABLES UNDER EXTREME RANKED SET SAMPLING (ERSS)

Etorti, Imoke John ${ }^{1}$
Department of Mathematics, Cross River State College of Education, Akamkpa -Nigeria ${ }^{1}$
imoke.etorti@crs-coeakamkpa.edu.ng +2348062220171

By

Effanga Effanga Okon ${ }^{2}$
eoeffanga@yahoo.com
Mbe E. $\mathbf{N j a}^{3}$
$+2347036507635$
mbe nja@yahoo.com

Department of Statistics, University of Calabar, Calabar-Nigeria ${ }^{2,3}$

Abstract

When observations are costly and time consuming but the ranking of the observations without actual measurement can be done with ease comparatively, ERSS can be employed instead of Simple Random Sampling (SRS), to gain more information for estimation purposes. In this paper and in an attempt to address the problem of loss of efficiency usually suffered in estimation of population mean under SRS, a new family of ratio-cum-product estimators of population mean of the study variable Y is proposed based on ERSS using information on two concomitant variables. Members of the proposed family of estimators were obtained by varying the values of the scalars that aid in developing the estimators. Various properties of the estimators such as biases, relative biases, Mean Square Errors (MSEs), and Optimal Mean Square Errors (OMSEs) were derived to the quadratic form of Taylor's series approximation. Empirical study was conducted using three natural population data sets in order to investigate the performances and efficiency of the proposed family of estimators under ERSS over its corresponding counterpart's estimator based on SRS and some existing ratio and product estimators. This empirical study was followed up with a computer simulation study using R-software. The results revealed that the proposed family of estimators in ERSS produced about 50% smaller MSEs which is an indicator of appreciable gain in efficiency and superiority over its corresponding counterpart estimator and some existing ratio type estimators in sample survey for all cases considered in this paper and were therefore adjudged to provide a better alternative whenever efficiency is required. (Word count 255)

Keywords: Extreme Ranked Set Sampling, Mean Square Errors, Simple Random Sampling, Ratio-cum-product Estimator, simulation.

1.1 Introduction

Ranked set sampling (RSS) is an approach to dealing with sample selection. It was proposed in the seminal paper of McIntyre (1952). His experience in agricultural application provoked a challenge to the usual simple random sampling (SRS) design introducing a previous ordering of the units. The practical studies suggested that it produces more accurate estimators of the mean. His proposal was taken into account by other researchers dealing with agricultural studies. They also obtained better results using RSS. The mathematical validity of the McIntyre's instinctive postulation was sustained by the work of Takahasi and Wakimoto (1968) on unbiased estimates of the population mean based on sample stratified by means of ordering. That fact also remained unnoticed by the majority of the statistical community but some interesting results were developed for establishing the mathematical reasons sustaining having a better result when using RSS. Dell and Clutter (1972) proved that deviations in ordering lowers the accuracy of the RSS mean comparative to SRS mean. Nevertheless, RSS mean is always superior over the SRS mean till ordering is too substandard as to produce a random sample when its performances is akin to that of SRS mean.

The techniques of Extreme-Ranked Set Sampling (ERSS) was first introduced by Samawi et al. (1996) to estimate the population mean and showed that the mean based on ERSS though unbiased but is more efficient that the sample mean due to SRS. Furthermore, Samawi (1996) introduced the principle of Stratified Ranked Set Sampling (SRSS); to improve the precision of estimating the population means in case of SSRS.

Haq and Shabbir (2010) suggested a family of ratio estimator for population mean in extreme ranked set sampling using two auxiliary variables and illustrated that the estimators under ERSS are more efficient in comparison to estimator based on SRS especially when the underlying population is symmetric.

Al-Omari (2019) developed and improved ratio-cum-product estimators of the population for single concomitant variable under ERSS and SRS motivated by the Singh and Espejo (2003) ratio-cum-product estimators and showed that ERSS techniques provides a better and improved results in comparison with SRS sampling procedure.
Ali and Iqbal (2021) proposed an efficient generalized family of estimators to estimate finite population mean of study variable under Ranked Set Sampling utilizing information on an auxiliary variable and concluded that when correlation between the study and auxiliary variables increases, the proposed generalized family of estimators proved to be efficient estimator of population mean of the study variable.

Imoke et al. (2022) suggested a class of ratio-cum-product estimators for population mean following information on a single accompanying variable, under ERSS and SRS techniques and successfully showed that the suggested class of estimators in ERSS produced smaller biases and MSEs which is an indicator of appreciable gain in efficiency and superiority over its corresponding counterpart estimator and some existing ratio type estimators in sample survey for all cases considered in paper and were therefore adjudged to provide a better alternative whenever efficiency is required.

Other researchers who worked on RSS and its modifications include but not limited to AlOmari el tal.(2009), Kaur et al. (1995) Al Saleh and Al-Kadiri (2000), Al-Saleh and AlOmari (2002), Abu Dayyeh et al. (2002), Al-Saleh and-Zheng(2002), Al-Saleh and Samawi (2000), Ozturk and Wolfe (2000), Ozturk (2002), Al-Saleh and Ababneh (2015), Zheng and Al-Saleh (2002), Al-Saleh and Darabseh (2017)). In continuation of the search for a better method of estimating the population mean, this paper put forward a new family Ratio-cum product estimators for population mean under Extreme Ranked Set Sampling (ERSS) that would evaluate properties such as biases, relative biases, Mean Square Errors (MSEs) to a degree desired when compared to its corresponding counterpart estimator based on SRS and some existing ones. Analytical and simulation study of performances and efficiencies of the estimators over the usual SRS method using their (MSEs) were carried out in an attempt to support the theoretical results with numerical illustration, from where conclusion was drawn following the results obtained from the paper.

2.0 Sampling methods

Here, we present the sampling scheme which are employed in the course of this paper i.e Extreme Ranked Set Sampling (ERSS), as well as the frequently used (SRS).

2.1 Extreme Ranked Set Sampling (ERSS)

The ERSS method, as suggested by Samawi et al. (1996), can be described as given below:
a : \quad Select m random samples, each of size m units, from an infinite population and order the units within each sample with respect to a variable under consideration by impressionistic method or any other cost-free procedure. For exact quantification, if the sample size m is even, from the first $\frac{m}{2}$ sets, select the smallest ordered units and from the other $\frac{m}{2}$ sets select the largest ranked unit. Such a sample shall be represented by ERSSe.
b : If the sample size m is odd, then there are two options:
(i) From the first $\frac{m-1}{2}$ sets we choose the average of the observation of the smallest units in the $\frac{m-1}{2}$ sets, and from the other $\frac{m-1}{2}$ sets, we take the average of the measures of the largest ranked unit. Such a sample shall be represented by $E R S S_{0(a)}$.
(ii) From the remaining measure of the $m^{\text {th }}$ unit we take the median. Such a sample will be represented by $E R S S_{0(m)}$.
e : is even
$0(a)$: is odd average
$0(m)$: is odd median
The procedure can be continued r times, if need be, to get a sample of size $r m$ units. The choices of (a) and $b(i i)$ is usually less difficult in application than the choice of $b(i)$. In this paper, we considered the choices of (a) and $b(i i)$, (i.e the even case and the case of taking the median from the $m^{t h}$ sample if m is odd).

Let $\left(X_{i(1)}, Y_{i[1]}, Z_{i(1)}\right),\left(X_{i(2)}, Y_{i[2]}, Z_{i(2)}\right), \ldots,\left(X_{i(m)}, Y_{i[m]}, Z_{i(m)}\right)$, be the ordered Statistics of the $i^{\text {th }}$ sample $\left(X_{i(1)}, Y_{i[1]}, Z_{i(1)}\right),\left(X_{i(2)}, Y_{i[2]}, Z_{i(2)}\right), \ldots,\left(X_{i(m)}, Y_{i[m]}, Z_{i(m)}\right), \quad(i=$ $1,2, \ldots, m)$. If m is even, then:
$\left(X_{1(1)}, Y_{1[1]}, Z_{1(1)}\right),\left(X_{2(1)}, Y_{2[1]}, Z_{2(1)}\right),\left(X_{3(1)}, Y_{3[1]}, Z_{3(1)}\right), \ldots,\left(X_{m-1(1)}\right.$, $\left.Y_{m-1[1]}, Z_{m-1(1)}\right),\left(X_{m(m)}, Y_{m[m]}, Z_{m(m)}\right)$ represent ERSSe.

The estimator of the means and variances using ERSSe of sample size m (recall that m is even) is defined by:

$$
\left.\begin{array}{r}
\bar{X}^{\text {ERSSe }}=\frac{1}{2}\left(\bar{X}_{(1)},+\bar{X}_{(m)}\right)=\frac{2}{m}\left(\sum_{i=1}^{\frac{m}{2}} X_{2 i-1(1)}+\sum_{i=1}^{m} X_{2 i(m)}\right) \\
\bar{Y}^{\text {ERSSe }}=\frac{1}{2}\left(\bar{Y}_{(1)},+\bar{Y}_{[m]}\right)=\frac{2}{m}\left(\sum_{i=1}^{\frac{m}{2}} Y_{2 i-1[1]}+\sum_{i=1}^{m} Y_{2 i[m]}\right) \\
\bar{Z}^{\text {ERSSe }}=\frac{1}{2}\left(\bar{Z}_{(1)},+\bar{Z}_{(m)}\right)=\frac{2}{m}\left(\sum_{i=1}^{\frac{m}{2}} Z_{2 i-1(m)}+\sum_{i=1}^{m} Z_{2 i(m)}\right)
\end{array}\right\}
$$

with variances

$$
\left.\begin{array}{l}
\operatorname{Var}\left(\bar{X}^{\text {ERSSe }}\right)=\frac{1}{2 m}\left(\sigma_{X(1)}^{2}+\sigma_{X(m)}^{2}\right) \\
\operatorname{Var}\left(\bar{Y}^{\text {ERSSe }}\right)=\frac{1}{2 m}\left(\sigma_{Y[1]}^{2}+\sigma_{Y[m]}^{2}\right) \tag{3}\\
\operatorname{Var}\left(\bar{Z}^{E R S S e}\right)=\frac{1}{2 m}\left(\sigma_{Z(1)}^{2}+\sigma_{Z(m)}^{2}\right)
\end{array}\right\}
$$

If m is odd, then using $E R S S_{0(m)}$ the measures
$\left(X_{1(1)}, Y_{1[1]}, Z_{1(1)}\right),\left(X_{2(1)}\right.$,
$\left.Y_{2[1]}, Z_{2(1)}\right),\left(X_{3(1)}, Y_{3[1]}, Z_{3(1)}\right), \ldots\left(X_{m-1(1)}, Y_{m-1[1]}, Z_{m-1(1)}\right),\left[X_{m\left(\frac{m+1}{2}\right)}\right.$,
$\left.Y_{m\left[\frac{m+1}{2}\right]} Z_{m\left(\frac{m+1}{2}\right)}\right]$ represents $\operatorname{ERSS}_{0(m)}$

$$
\begin{aligned}
\bar{X}^{E R S S_{0(m)}}= & \frac{X_{1(1)}+X_{2(1)}+X_{3(1)}+\ldots+X_{m-1(m)}+X_{m\left(\frac{m+1}{2}\right)}}{m}, \\
\bar{Y}^{E R S S_{0(m)}}= & \frac{Y_{1[1]}+Y_{2[2]}+Y_{[3]}+\ldots+Y_{m-1[m]}+Y_{m\left[\frac{m+1}{2}\right]}}{m}, \\
\bar{Z}^{E R S S_{0(m)}}= & \frac{Z_{1(1)}+Z_{2(2)}+Z_{(3)}+\ldots+Z_{m-1(m)}+Z_{m\left(\frac{m+1}{2}\right)}}{m},
\end{aligned}
$$

we can check easily that

$$
\left.\begin{array}{l}
E\left(\bar{X}^{\left.E R S S_{0(m)}\right)}=\frac{m-1}{2 m}\left(\mu_{x(1)},+\mu_{x(m)}\right)+\frac{1}{m} \mu_{x\left(\frac{m+1}{2}\right)}\right. \\
E\left(\bar{Y}^{E R S S_{0(m)}}\right)=\frac{m-1}{2 m}\left(\mu_{y[1]},+\mu_{y[m]}\right)+\frac{1}{m} \mu_{y\left[\frac{m+1}{2}\right]} \tag{4}\\
E\left(\bar{Z}^{E R S S_{0(m)}}\right)=\frac{m-1}{2 m}\left(\mu_{z(1)},+\mu_{z(m)}\right)+\frac{1}{m} \mu_{z\left(\frac{m+1}{2}\right)}
\end{array}\right\}
$$

Using the fact that $X_{1(1)}, X_{2(1)}, X_{3(1)}, \ldots, X_{m-1(m)}, Y_{1[1]}, Y_{2[1]}, Y_{3[1]}, \ldots, Y_{m-1[m]}$ are all independent and $Z_{1[1]}, Z_{2[1]}, Z_{3[1]}, \ldots, Z_{m-1(m)}$ are all independent, the variance of $\bar{X}^{E R S S_{0(m)}}$, $\bar{Y}^{E R S S_{0(m)}}$, and $\bar{Z}^{E R S S_{0(m)}}$ can be shown to be:

$$
\left.\begin{array}{l}
\operatorname{Var}\left(\bar{X}^{E R S S_{0(m)}}\right)=\frac{(m-1)}{2 m^{2}}\left(\sigma_{X(1)}^{2}+\sigma_{X(m)}^{2}\right)+\frac{1}{m^{2}} \sigma_{x\left(\frac{m+1}{2}\right)}^{2} \\
\operatorname{Var}\left(\bar{Y}^{\left.E R S S_{0(m)}\right)}=\frac{(m-1)}{2 m^{2}}\left(\sigma_{Y[1]}^{2}+\sigma_{Y[m]}^{2}\right)+\frac{1}{m^{2}} \sigma_{y\left[\frac{m+1}{2}\right]}^{2}\right. \tag{5}\\
\operatorname{Var}\left(\bar{Z}^{\left.E R S S_{0(m)}\right)}=\frac{(m-1)}{2 m^{2}}\left(\sigma_{Z(1)}^{2}+\sigma_{Z(m)}^{2}\right)+\frac{1}{m^{2}} \sigma_{z\left(\frac{m+1}{2}\right)}^{2}\right.
\end{array}\right\}
$$

2.2 Simple Random Sampling

In case of two concomitant variables X and Z, when ranking is done on Z.

For simplification of notation, we will assume that for $\left(X_{i(j)}, Y_{i[j]}, Z_{i(j)}\right)$ and according to our description, $\left(X_{11}, Y_{11}, Z_{11}\right),\left(X_{21}, Y_{21}, Z_{21}\right), \ldots,\left(X_{m 1}, Y_{m 1}, Z_{m 1}\right)$ is the SRS with mean

$$
\left.\begin{array}{rl}
\bar{X}^{S R S} & =\frac{1}{m}\left(\sum_{i=1}^{m} X_{i}\right) \tag{6}\\
\bar{Y}^{S R S} & =\frac{1}{m}\left(\sum_{i=1}^{m} Y_{i}\right) \\
\bar{Z}^{S R S} & =\frac{1}{m}\left(\sum_{i=1}^{m} Z_{i}\right)
\end{array}\right\}
$$

with variances

$$
\left.\begin{array}{l}
\operatorname{Var}\left(\bar{X}^{S R S}\right)=\left(\frac{1-f}{m}\right) \sigma_{x}^{2} \\
\operatorname{Var}\left(\bar{Y}^{S R S}\right)=\left(\frac{1-f}{m}\right) \sigma_{y}^{2} \tag{7}\\
\operatorname{Var}\left(\bar{Z}^{S R S}\right)=\left(\frac{1-f}{m}\right) \sigma_{z}^{2}
\end{array}\right\}
$$

if the finite population correction $f \neq 0$
and

$$
\left.\begin{array}{ll}
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}, & \sigma_{X Y}=\operatorname{Cov}\left(\bar{Y}^{S R S}, \bar{X}^{S R S}\right)=\rho_{X Y} \sigma_{X} \sigma_{Y} \\
\rho_{X Z}=\frac{\sigma_{X Z}}{\sigma_{X} \sigma_{Y}}, & \sigma_{X Y}=\operatorname{Cov}\left(\bar{X}^{S R S}, Z^{S R S}\right)=\rho_{X Z} \sigma_{X} \sigma_{Z} \tag{8}\\
\rho_{Y Z}=\frac{\sigma_{Y Z}}{\sigma_{Y} \sigma_{Z}}, & \sigma_{Y Z}=\operatorname{Cov}\left(\bar{Y}^{S R S}, \bar{Z}^{S R S}\right)=\rho_{Y Z} \sigma_{Y} \sigma_{Z}
\end{array}\right\}
$$

2.3 Notations and some useful equations

The following notations and expressions shall be useful in the course of this paper. For all $i=1,2, \ldots, m$. in case of two concomitant variables X and Z, when ranking is done on Z.

$$
\left.\begin{array}{c}
\mu_{x}=E\left(X_{i}\right) \\
\sigma_{x}^{2}=\operatorname{var}\left(X_{i}\right) \\
\mu_{x 1}=E\left(X_{i(1)}\right) \\
\mu_{x\left(\frac{m+1}{2}\right)}=E\left(X_{i\left(\frac{m+1}{2}\right)}\right) \\
\sigma_{x 1}^{2}=\operatorname{var}\left(X_{i(1)}\right) \\
\sigma_{x\left(\frac{m+1}{2}\right)}^{2}=\operatorname{var}\left(X_{i\left(\frac{m+1}{2}\right)}^{\sigma_{x m}^{2}=\operatorname{var}\left(X_{i(m)}\right)}\right. \\
\sigma_{x(1, m)}=\operatorname{cov}\left(X_{m(1)}, X_{m(m)}\right)
\end{array}\right\}
$$

Remark 2.1

If the underlying distribution is symmetric about the origin 0 , then $X_{i} \cong-\mathrm{X}_{(m-i+1)}$, likewise $Y_{i} \cong-\mathrm{Y}_{[m-i+1]}$ and $Z_{i} \cong-\mathrm{Z}_{(m-i+1)}$ Arnold, Balakrishman and Nagaraja (1992) showed that $X_{i} \cong-X_{(m-i+1)}$, and $\sigma_{Y[1]}^{2}=\sigma_{X(1)}^{2}=\sigma_{Z(1)}^{2}=\sigma_{X(m-i+1)}^{2}$ for all $i=$ $1,2, \ldots, m$. This implies that $\mu_{x(1)}=-\mu_{x(m)}, \mu_{y[1]}=-\mu_{y[m]}$, also $\mu_{z(1)}=-\mu_{z(m)}$ and if m is odd, $\mu_{y\left[\frac{m+1}{2}\right]}=\mu_{x\left(\frac{m+1}{2}\right)}=\mu_{z\left(\frac{m+1}{2}\right)}=\mu=0$ where $\frac{m+1}{2}$ means the median rank. Also $\sigma_{Y(1)}^{2}=\sigma_{X(1)}^{2}=\sigma_{Z(1)}^{2}=\sigma_{X(m)}^{2}$. Using the above results, $E\left(\bar{X}^{E R S S e}\right)=0, E\left(\bar{X}^{E R S S_{0(a)}}\right)=$ 0 , and $E\left(\bar{X}^{S R S}\right)=0$. Therefore equations (3) and (5) will boil down to:

$$
\left.\begin{array}{l}
\operatorname{Var}\left(\bar{X}_{0}^{E R S S e}\right)=\frac{1}{m}\left(\sigma_{X(1)}^{2}\right) \tag{13}\\
\operatorname{Var}\left(\bar{Y}_{0}^{\text {ERSSe }}\right)=\frac{1}{m}\left(\sigma_{Y[1]}^{2}\right) \\
\operatorname{Var}\left(\bar{Z}_{0}^{E R S S e}\right)=\frac{1}{m}\left(\sigma_{Z(1)}^{2}\right)
\end{array}\right\}
$$

if the finite population correction $f \rightarrow 0$

$$
\left.\begin{array}{l}
\operatorname{Var}\left(\bar{X}_{0}^{E R S S_{0(m)}}\right)=\frac{1}{m^{2}}\left((m-1)\left(\sigma_{X(1)}^{2}\right)+\sigma_{X\left(\frac{m+1}{2}\right)}^{2}\right) \\
\operatorname{Var}\left(\bar{Y}_{0}^{E R S S_{0(m)}}\right)=\frac{1}{m^{2}}\left((m-1)\left(\sigma_{Y[1]}^{2}\right)+\sigma_{y\left[\frac{m+1}{2}\right]}^{2}\right) \tag{14}\\
\operatorname{Var}\left(\bar{Z}_{0}^{E R S S_{0(m)}}\right)=\frac{1}{m^{2}}\left((m-1)\left(\sigma_{Z(1)}^{2}\right)+\sigma_{z\left(\frac{m+1}{2}\right)}^{2}\right)
\end{array}\right\}
$$

3.0 Some Existing Estimators in SRS with two auxiliary variables with their MSEs

$$
T_{S}=\bar{y}\left(\frac{\bar{X}+\rho_{x z}}{\bar{x}+\rho_{x z}}\right)\left(\frac{\bar{z}+\rho_{x z}}{\bar{z}+\rho_{x z}}\right)
$$

Singh and Taylor (2005)

$\operatorname{MSE}\left(T_{S}\right)=\left(\frac{1-f}{m}\right) \bar{Y}^{2}\left(C_{y}^{2}+3 C_{x}^{2}+C_{z}^{2}-2 C_{x y}+2 C_{y z}-2 C_{x z}\right)$

$$
T_{S 2}=\bar{y}\left(\frac{\bar{x}^{*}}{\bar{X}}\right)\left(\frac{\bar{z}}{\bar{z}^{*}}\right)
$$

Sing et al (2011)
$\operatorname{MSE}\left(T_{S 2}\right)=\left(\frac{1-f}{m}\right) \bar{Y}^{2}\left(C_{y}^{2}+3 g^{2} C_{z}^{2}-g^{2} C_{x}^{2}+4 g C_{x y}-4 g C_{y z}+4 g^{2} C_{x z}\right)$
$T_{V}=\bar{y}\left(\frac{a \bar{x}^{*}+b}{a \bar{X}+b}\right)^{\delta_{1}}\left(\frac{a \bar{Z}+b}{a \overline{\bar{z}}^{*}+b}\right)^{\delta_{2}}$

Vishwakarma and Kumar (2015)

$$
\operatorname{MSE}\left(T_{S 2}\right)=\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+3 \frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} \lambda_{a}^{2} g^{2} C_{1}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{b}^{2} C_{2}^{2}-4 g \lambda_{a} \delta_{1} C_{10}-4 g \lambda_{b} \delta_{2} C_{20}+\right.
$$

$$
\begin{equation*}
\left.4 g^{2} \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} C_{21}\right) \tag{17}
\end{equation*}
$$

3.1 The proposed class of estimator based on ERSS

As an extension of Imoke et al. (2022) class of ratio-cum-product estimators of population mean using a single accompanying variable under ERSS and SRS, we proposed a new family of ratio-cum-product type estimator of population mean Y in case of two accompanying variables X and Z , when ranking is done on Z using ERSS techniques as:

$$
\begin{align*}
& T_{2 E j}= \\
& \bar{y}^{E R S S_{e}}\left[w_{1}\left(\frac{a \bar{X}^{E R S S_{e}}}{a \bar{x}^{E R S S}}+\rho\right)^{\alpha_{1}}\left(\frac{b \bar{z}^{E R S S_{e}}+\rho}{b \bar{Z}^{E R S S_{e}+\rho}}\right)^{\alpha_{2}}+\right. \\
& \left.w_{2}\left(\frac{a \bar{x}^{* E R S S}}{e+\rho}{ }_{a * \bar{X} E R S S_{e}+\rho}\right)^{\delta_{1}}\left(\frac{b \bar{Z}^{E R S S_{e}+\rho}}{b \bar{z}^{* E R S S}+\rho}\right)^{\delta_{2}}\right] \tag{18}\\
& T_{2(0(m)) j}= \\
& \bar{y}^{E R S S_{0(m)}}\left[w_{1}\left(\frac{a \bar{x}^{E R S S_{0(m)}}}{a \bar{x}^{E R S S_{0(m)}+\rho}}\right)^{\alpha_{1}}\left(\frac{b \bar{z}^{E R S S_{0(m)}+\rho}}{b \bar{z}^{E R S S_{0(m)}+\rho}}\right)^{\alpha_{2}}+\right. \\
& \left.w_{2}\left(\frac{a \bar{x}^{* E R S S}}{a * S_{0(m)+\rho}{ }^{E R S S_{0(m)}+\rho}}\right)^{\delta_{1}}\left(\frac{b \bar{Z}^{E R S S_{0(m)}+\rho}}{b \bar{z}^{* E R S S_{0(m)}+\rho}}\right)^{\delta_{2}}\right]
\end{align*}
$$

where ($a, b \neq 0, \rho \neq 0$) are real numbers and also may take the values of parameters associated with either the study variable y or the accompanying variables (x, z); in this case, the coefficient of variation and the correlation coefficient respectively ($\alpha_{1}, \alpha_{2}, \delta_{1}, \delta_{2}$) are scalars or real constants which helps in designing the estimators and can be determined suitably. (w_{1}, w_{2}) are suitably chosen scalars whose sum need not be unity. when α_{1}, α_{2}, δ_{1}, and δ_{2} are fixed, w_{1}, w_{2} may be selected in an optimum manner by minimizing the (MSEs) of $T_{2 E j} j=1$ to m with respect to w_{1}, w_{2}. Where $\bar{x}^{* E R S S_{e}}=\left\{(1+g) \bar{X}^{E R S S_{e}}-\right.$ $\left.g \bar{x}^{E R S S_{e}}\right\}, \quad z^{* E R S S}=\left\{(1+g) \bar{Z}^{E R S S}-g \bar{z}^{E R S S}\right\}$ are unbiased estimator of population means, $\bar{X}^{E R S S_{e}}$, $\bar{Z}^{E R S S_{e}} \quad$ respectively,
$g=\frac{m}{(M-m)},\left|\left(1-g \lambda_{i} e_{i}\right)\right|<1$, or $\left|\left(1-g \lambda_{i}\left(\frac{\bar{x}^{E R S S_{e}-\bar{X}^{E R S S}}{ }_{e}}{\bar{X}^{E R S S_{e}}}\right)\right)\right|<1$
$i=0,1,2$, for all the ${ }^{M} C_{m}$ samples.
Where $\lambda_{i}=\frac{\bar{X}^{E R S S_{e}}}{\bar{X}^{E R S S_{e}+\rho}}, e_{y}=\frac{\bar{y}^{E R S S_{e}} \overline{\bar{Y}}^{E R S S_{e}}}{\bar{Y}^{E R S S_{e}}}, e_{x}=\frac{\bar{x}^{E R S S_{e}-\bar{X}^{E R S S}}}{\bar{X}_{e}}{ }^{E R S S_{e}}, e_{z}=\frac{\bar{z}^{E R S S_{e}} \overline{\bar{Z}}^{E R S S_{e}}}{\bar{Z}^{E R S S_{e}}}$

3.2 The second proposed class of estimator based on SRS

$$
\begin{equation*}
T_{2 S i}=\bar{y}^{S R S}\left[w_{1}\left(\frac{a \bar{X}^{S R S}+\rho}{a \bar{x}^{S R S}+\rho}\right)^{\alpha_{1}}\left(\frac{b \bar{z}^{S R S}+\rho}{b \bar{z}^{S R S}+\rho}\right)^{\alpha_{2}}+w_{2}\left(\frac{a \bar{x}^{* S R S}+\rho}{a * \bar{X}^{S R S}+\rho}\right)^{\delta_{1}}\left(\frac{b \bar{z}^{S R S}+\rho}{b \bar{z}^{* S R S}+\rho}\right)^{\delta_{2}}\right] \tag{20}
\end{equation*}
$$

where $\bar{x}^{* S R S}=\left\{(1+g) \bar{X}^{S R S}-g \bar{x}^{S R S}\right\}$ and $\bar{z}^{*}{ }_{\text {ERSS }}=\left\{(1+g) \bar{Z}^{S R S}-g \bar{z}^{S R S}\right\}$ are unbiased estimators of population mean, $\bar{X}^{S R S}, \bar{Z}^{S R S}$ respectively

$$
g=\frac{m}{(M-m)}=\frac{f}{(1-f)} \text { and } f=\frac{m}{M},\left|\left(1-g \lambda_{i} e_{i}\right)\right|<1, \text { or }\left|\left(1-g \lambda_{i}\left(\frac{\bar{x}^{S R S}-\bar{X}^{S R S}}{\bar{X}^{S R S}}\right)\right)\right|<1
$$

$i=0,1,2$. For all the ${ }^{M} C_{m}$ samples.

TABLE 1

Some members of the class of estimators $T_{2 E j}$

S.N	Estimators	Values of Scalars								
		w_{1}	w_{2}	a	b	ρ	α_{1}	α_{2}	δ_{1}	δ_{2}
1	$T_{2 E 1}=\bar{y}^{E R S S_{e}}$	1	0	0	0	0	0	0	0	0
2	$T_{2 E 2}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{X}^{E R S S_{e}}}{x^{E R S S_{e}}}\right)$	1	0	1	1	0	1	0	0	0
3	$T_{2 E 3}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{z}^{E R S S_{e}}}{\bar{Z}^{E R S S_{e}}}\right)$	1	0	0	1	0	0	1	0	0
4	$T_{2 E 4}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{x}^{* E R S S_{e}}}{\bar{X}^{E R S S_{e}}}\right)$	0	1	1	1	0	0	0	1	0
5	$T_{2 E 5}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{Z}^{E R S S_{e}}}{\bar{z}^{* E R S S_{e}}}\right)$	0	1	0	1	0	0	0	1	1
6	$T_{2 E 6}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{X}^{E R S S_{e}}}{x^{E R S S_{e}}}\right)\left(\frac{\bar{z}^{E R S S_{e}}}{\bar{Z}^{E R S S_{e}}}\right)$	1	0	1	1	0	1	1	0	0
7	$T_{2 E 7}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{x}^{* E R S S_{e}}}{\bar{X}^{E R S S} S_{e}}\right)\left(\frac{\bar{z}^{E R S S_{e}}}{\bar{z}^{* E R S S_{e}}}\right)$	0	1	1	1	0	0	0	1	1
8	$T_{2 E 8}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{X}^{E R S S_{e}}}{x^{E R S S_{e}}}\right)^{\alpha_{1}}\left(\frac{\bar{z}^{E R S S_{e}}}{\bar{Z}^{E R S S_{e}}}\right)^{\alpha_{2}}$	1	0	1	1	0	α_{1}	α_{2}	0	0
9	$T_{2 E 9}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{x}^{* E R S S_{e}}}{\bar{X}^{E R S S_{e}}}\right)^{\delta_{1}}\left(\frac{\bar{Z}^{E R S S_{e}}}{\bar{z}^{* E R S S_{e}}}\right)^{\delta_{2}}$	0	1	1	1	0	0	0	δ_{1}	δ_{2}
10	$T_{2 E 10}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{X}^{E R S S_{e}}+\rho}{\bar{x}^{E R S S_{e}}+\rho}\right)\left(\frac{\bar{z}^{E R S S_{e}}+\rho}{\bar{z}^{E R S S_{e}}+\rho}\right)$	1	0	1	1	ρ	1	1	0	0
11		0	1	1	1	ρ	0	0	1	1
12		1	0	1	1	ρ	α_{1}	α_{2}	0	0
13	$T_{2 E 13}=\bar{y}^{E R S S_{e}}\left(\frac{\bar{x}^{* E R S S_{e}}+\rho}{\bar{X}^{E R S S_{e}}+\rho}\right)^{\delta_{1}}\left(\frac{\bar{z}^{E R S S_{e}}+\rho}{\bar{z}^{* E R S S_{e}}+\rho}\right)^{\delta_{2}}$	0	1	1	1	ρ	0	0	δ_{1}	δ_{2}
14		0	1	a	b	ρ	0	0	1	1
15	$T_{2 E 15}=\bar{y}^{E R S S_{e}}\left(\frac{a \bar{X}^{E R S S_{e}}+\rho}{a \bar{x}^{E R S S} S_{e}+\rho}\right)^{\alpha_{1}}\left(\frac{b \bar{z}^{E R S S_{e}}+\rho}{b \bar{Z}^{E R S S}}+\rho\right)^{\alpha_{e}}$	1	0	a	b	ρ	α_{1}	α_{2}	0	0
16	$T_{2 E 16}=\bar{y}^{E R S S_{e}}\left(\frac{a \bar{x}^{* E R S S_{e}}+\rho}{a * \bar{X}^{E R S S_{e}}+\rho}\right)^{\delta_{1}}\left(\frac{b \bar{z}^{E R S S_{e}}+\rho}{b \bar{z}^{* E R S S_{e}}+\rho}\right)^{\delta_{2}}$	0	1	a	b	ρ	0	0	δ_{1}	δ_{2}

TABLE 2

Some members of the class of estimators $T_{2(0(m)) j}$

S/N	Estimators	Values of Scalars								
		w_{1}	W_{2}	a	b	$\boldsymbol{\rho}$	α_{1}	α_{2}	δ_{1}	δ_{2}
1	$\boldsymbol{T}_{\mathbf{2 (0}(\mathrm{m}) \mathrm{1} 1}=\bar{y}^{E R S S_{0(m)}}$	1	0	0	0	0	0	0	0	0
2	$\boldsymbol{T}_{\mathbf{2 (0 , m) 2}}=\bar{y}^{E R S S_{0(\boldsymbol{m})}}\left(\frac{\bar{X}^{E R S S_{0(m)}}}{x^{E R S S_{0(\boldsymbol{m})}}}\right)$	1	0	1	1	0	1	0	0	0
3	$\boldsymbol{T}_{2(\mathbf{0}(\boldsymbol{m}) \mathbf{3}}=\bar{y}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}\left(\frac{\bar{z}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}}{\bar{Z}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}}\right)$	1	0	0	1	0	0	1	0	0
4	$\boldsymbol{T}_{\mathbf{2 (\mathbf { 0 } (\boldsymbol { m })) 4}}=\bar{y}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}\left(\frac{\bar{x}^{* E R S S_{0(\boldsymbol{m})}}}{\bar{X}^{E R S S_{0(\boldsymbol{m})}^{e}}}\right)$	0	1	1	1	0	0	0	1	0
5	$\boldsymbol{T}_{\mathbf{2 (\mathbf { 0 } (\boldsymbol { m })) 5}}=\bar{y}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}\left(\frac{\bar{Z}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}}{\bar{z}^{* E R S S_{\mathbf{0}(\boldsymbol{m})}}}\right)$	0	1	0	1	0	0	0	1	1
6	$\boldsymbol{T}_{\mathbf{2 (0} \mathbf{(m)} \mathbf{6} \mathbf{6}}=\bar{y}^{E R S S_{0(\boldsymbol{m})}}\left(\frac{\bar{X}^{E R S S_{0(\boldsymbol{m})}}}{x^{E R S S_{\mathbf{0}(\boldsymbol{m})}}}\right)\left(\frac{\bar{z}^{E R S S_{0(\boldsymbol{m})}}}{\bar{Z}^{E R S S_{0(\boldsymbol{m})}}}\right)$	1	0	1	1	0	1	1	0	0
7		0	1	1	1	0	0	0	1	1
8		1	0	1	1	0	α_{1}	α_{2}	0	0
9	$\boldsymbol{T}_{\mathbf{2 (0}(\boldsymbol{m})) 9}=\bar{y}^{E R S S_{0(\boldsymbol{m})}}\left(\frac{\bar{x}^{* E R S S_{0(\boldsymbol{m})}}}{\bar{X}^{E R S S_{0(\boldsymbol{m})}}}\right)^{\boldsymbol{\delta}_{1}}\left(\frac{\bar{Z}^{E R S S_{0(\boldsymbol{m})}}}{\bar{z}^{* E R S S_{0(\boldsymbol{m})}}}\right)^{\delta_{2}}$	0	1	1	1	0	0	0	δ_{1}	δ_{2}
10	$\boldsymbol{T}_{\mathbf{2 (0}(\boldsymbol{m}) \mathbf{1 0}}=\bar{y}^{E R S S_{0(\boldsymbol{m})}}\left(\frac{\bar{X}^{E R S S_{0(\boldsymbol{m})}}+\rho}{\bar{x}^{E E R S S_{0(\boldsymbol{m})}}+\rho}\right)\left(\frac{\bar{z}^{E R S S_{0(\boldsymbol{m})}}+\rho}{\bar{z}^{E R S S_{0(\boldsymbol{m})}}+\rho}\right)$	1	0	1	1	ρ	1	1	0	0
11	$\boldsymbol{T}_{\mathbf{2 (\mathbf { 0 } (\boldsymbol { m })) \mathbf { 1 1 }}}=\bar{y}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}\left(\frac{\bar{x}^{* E R S S_{0(\boldsymbol{m})}}+\rho}{\bar{X}^{E R S S} S_{e}+\rho}\right)\left(\frac{\bar{z}^{E R S S_{0(\boldsymbol{m})}}+\rho}{\bar{z}^{* E R S S_{0(\boldsymbol{m})}}+\rho}\right)$	0	1	1	1	ρ	0	0	1	1
12		1	0	1	1	ρ	α_{1}	α_{2}	0	0
13		0	1	1	1	ρ	0	0	δ_{1}	δ_{2}
14		0	1	a	b	ρ	0	0	1	1
15	$\boldsymbol{T}_{2(\mathbf{0}(\boldsymbol{m})) \mathbf{1 5}}=\bar{y}^{E R S S_{\mathbf{0}(\boldsymbol{m})}}\left(\frac{a \bar{X}^{E R S S_{0(\boldsymbol{m})}}+\rho}{a \bar{x}^{E R S S_{0(\boldsymbol{m})}}+\rho}\right)^{\alpha_{1}}\left(\frac{b \bar{z}^{E R S S_{0(\boldsymbol{m})}}+\rho}{b \bar{Z}^{E R S S_{0(\boldsymbol{m})}}+\rho}\right)^{\alpha_{2}}$	1	0	a	b	ρ	α_{1}	α_{2}	0	0
16	$\boldsymbol{T}_{2(\mathbf{0}(\boldsymbol{m})) 16}=\bar{y}^{E R S S_{0(m)}}\left(\frac{a \bar{x}^{* E R S S_{0(m)}}+\rho}{a * \bar{X}^{E R S S_{0(m)}}+\rho}\right)^{\delta_{1}}\left(\frac{b \bar{Z}^{E R S S_{0(m)}}+\rho}{b \bar{z}^{* E R S S_{0(m)}}+\rho}\right)^{\delta_{2}}$	0	1	a	b	ρ	0	0	δ_{1}	δ_{2}

TABLE 3

Some members of the class of estimators $T_{2 S_{j}}, j=1,2,3, \ldots 16$

S/N	Estimators $\boldsymbol{T}_{2 S j}$	Values of Scalars								
		w_{1}	w_{2}	a	b	ρ	α_{1}	α_{2}	δ_{1}	δ_{2}
1	$\mathrm{T}_{2 S 1}=\bar{y}^{\text {SRS }}$	1	0	0	0	0	0	0	0	0
2	$\boldsymbol{T}_{2 S 2}=\bar{y}^{S R S}\left(\frac{\bar{X}^{S R S}}{x^{S R S}}\right)$	1	0	1	1	0	1	0	0	0
3	$\boldsymbol{T}_{2 S 3}=\bar{y}^{S R S}\left(\frac{\bar{z}^{S R S}}{\bar{Z}^{S R S}}\right)$	1	0	0	1	0	0	1	0	0
4	$\boldsymbol{T}_{2 S 4}=\bar{y}^{S R S}\left(\frac{\bar{x}^{* S R S}}{\bar{X}^{S R S}}\right)$	0	1	1	1	0	0	0	1	0
5	$\boldsymbol{T}_{2 S 5}=\bar{y}^{S R S}\left(\frac{\bar{z}^{S R S}}{\overline{\bar{z}}^{* S R S}}\right)$	0	1	0	1	0	0	0	1	1
6	$\boldsymbol{T}_{2 S 6}=\bar{y}^{S R S}\left(\frac{\bar{X}^{S R S}}{\bar{x}^{S R S}}\right)\left(\frac{\bar{z}^{S R S}}{\bar{z}^{S R S}}\right)$	1	0	1	1	0	1	1	0	0
7	$\boldsymbol{T}_{2 S 7}=\bar{y}^{S R S}\left(\frac{\bar{x}^{* S R S}}{\bar{X}^{S R S}}\right)\left(\frac{\bar{z}^{S R S}}{\bar{z}^{* S R S}}\right)$	0	1	1	1	0	0	0	1	1
8	$\boldsymbol{T}_{2 S 8}=\bar{y}^{S R S}\left(\frac{\bar{X}^{S R S}}{x^{S R S}}\right)^{\alpha_{1}}\left(\frac{\bar{z}^{S R S}}{\bar{Z}^{S R S}}\right)^{\alpha_{2}}$	1	0	1	1	0	α_{1}	α_{2}	0	0
9	$\boldsymbol{T}_{2 S 9}=\bar{y}^{S R S}\left(\frac{\bar{x}^{*} S R S}{\bar{X}^{S R S}}\right)^{\delta_{1}}\left(\frac{\bar{z}^{S R S}}{\bar{z}^{* S R S}}\right)^{\delta_{2}}$	0	1	1	1	0	0	0	δ_{1}	δ_{2}
10	$\boldsymbol{T}_{2 S 10}=\bar{y}^{S R S}\left(\frac{\bar{X}^{S R S}+\rho}{\bar{x}^{S R S}+\rho}\right)\left(\frac{\bar{z}^{S R S}+\rho}{\overline{\bar{Z}}^{S R S}+\rho}\right)$	1	0	1	1	ρ	1	1	0	0
11	$\boldsymbol{T}_{2 S 11}=\bar{y}^{S R S}\left(\frac{\bar{x}^{* S R S}+\rho}{\bar{X}^{S R S}+\rho}\right)\left(\frac{\bar{Z}^{S R S}+\rho}{\bar{z}^{* S R S}+\rho}\right)$	0	1	1	1	ρ	0	0	1	1
12	$\boldsymbol{T}_{2 S 12}=\bar{y}^{S R S}\left(\frac{\overline{\bar{x}}^{S R S}+\rho}{\overline{x^{S R S}}+\rho}\right)^{\alpha_{1}}\left(\frac{\overline{\bar{z}}^{S R S}+\rho}{\bar{z}^{S R S}+\rho}\right)^{\alpha_{2}}$	1	0	1	1	ρ	α_{1}	α_{2}	0	0
13	$\boldsymbol{T}_{2 S 13}=\bar{y}^{S R S}\left(\frac{\bar{x}^{* S R S}+\rho}{\bar{X}^{S R S}+\rho}\right)^{\delta_{1}}\left(\frac{\bar{Z}^{S R S}+\rho}{\bar{z}^{* S R S}+\rho}\right)^{\delta_{2}}$	0	1	1	1	ρ	0	0	δ_{1}	δ_{2}
14	$\boldsymbol{T}_{2 S 14}=\bar{y}^{S R S}\left(\frac{a \bar{x}^{* S R S}+\rho}{a \bar{X}^{S R S}+\rho}\right)\left(\frac{b \bar{z}^{S R S}+\rho}{b \bar{z}^{* S S}+\rho}\right)$	0	1	a	b	ρ	0	0	1	1
15	$\boldsymbol{T}_{2 S 15}=\bar{y}^{S R S}\left(\frac{a \bar{X}^{S R S}+\rho}{a \bar{x}^{S R S}+\rho}\right)^{\alpha_{1}}\left(\frac{b \bar{z}^{S R S}+\rho}{b \bar{z}^{S R S}+\rho}\right)^{\alpha_{2}}$	1	0	a	b	ρ	α_{1}	α_{2}	0	0
16	$\boldsymbol{T}_{2 S 16}=\bar{y}^{S R S}\left(\frac{a \bar{x}^{* S R S}+\rho}{a * \bar{X}^{S R S}+\rho}\right)^{\delta_{1}}\left(\frac{b \bar{z}^{S R S}+\rho}{b \bar{z}^{* S S}+\rho}\right)^{\delta_{2}}$	0	1	a	b	ρ	0	0	δ_{1}	δ_{2}

3.3 Biases, MSEs and optimal MSEs of the proposed estimators

To obtain the bias and Mean Square Error of the class of estimators $T_{2 E j}$ we write

$$
\begin{align*}
& \bar{y}^{E R S S_{e}}=\bar{Y}^{E R S S_{e}}\left(1+e_{y}\right) \\
& \bar{\chi}^{E R S S_{e}}=\bar{X}^{E R S S_{e}}\left(1+e_{x}\right) \\
& \bar{z}^{E R S S_{e}}=\bar{Z}^{E R S S_{e}}\left(1+e_{z}\right) \\
& E\left(e_{y}\right)=E\left(e_{x}\right)=E\left(e_{z}\right)=0 \\
& E\left(e_{y}^{2}\right)=\left(\frac{1}{2 m}\right) \frac{\operatorname{Var}\left(\bar{y}^{\text {ERSS }}\right)}{\left(\mu_{y}\right)^{2}}=C_{y}^{2} \\
& E\left(e_{x}^{2}\right)=\left(\frac{1}{2 m}\right) \frac{\operatorname{Var}\left(\chi^{E R S S} S_{e}\right)}{\left(\mu_{x}\right)^{2}}=C_{x}^{2} \\
& E\left(e_{z}^{2}\right)=\left(\frac{1}{2 m}\right) \frac{\operatorname{Var}\left(\bar{z}^{E R S S_{e}}\right)}{\left(\mu_{z}\right)^{2}}=C_{z}^{2} \\
& \Delta_{x y}=\left(\mu_{x(i)}-\mu_{x}\right)\left(\mu_{y[i]}-\mu_{y}\right) \\
& \Delta_{y z}=\left(\mu_{y[1]}-\mu_{y}\right)\left(\mu_{z(i)}-\mu_{z}\right) \\
& \Delta_{x z}=\left(\mu_{x(1)}-\mu_{x}\right)\left(\mu_{z(i)}-\mu_{z}\right) \tag{21a}\\
& E\left(e_{y} e_{x}\right)=C_{x y}=\left(\frac{1}{2 m}\right)\left(\rho_{x y} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{y}^{E R S S_{e}}\right)}}{\mu_{y}} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{x}^{E R S S_{e}}\right)}}{\mu_{x}}-\sum_{i=1}^{m} \Delta_{x y}\right)=\rho_{y x} C_{y} C_{x}-\frac{\phi_{1}}{2 m} \\
& E\left(e_{y} e_{z}\right)=C_{y z}=\left(\frac{1}{2 m}\right)\left(\rho_{y z} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{y}^{E R S S_{e}}\right)}}{\mu_{y}} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{z}^{E R S S} S_{e}\right.}}{\mu_{z}}-\sum_{i=1}^{m} \Delta_{y z}\right)=\rho_{y z} C_{y} C_{z}-\frac{\phi_{z}}{2 m} \\
& E\left(e_{x} e_{z}\right)=C_{x z}=\left(\frac{1}{2 m}\right)\left(\rho_{x z} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{x}^{E R S S} S_{e}\right.}}{\mu_{x}} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{z}^{E R S S_{e}}\right)}}{\mu_{z}}-\sum_{i=1}^{m} \Delta_{x z}\right)=\rho_{x z} C_{x} C_{z}-\frac{\phi_{3}}{2 m} \\
& \phi_{1}=\sum_{i=1}^{m} \Delta_{x y} \\
& \phi_{2}=\sum_{i=1}^{m} \Delta_{y z} \\
& \phi_{3}=\sum_{i=1}^{m} \Delta_{x z}
\end{align*}
$$

$T_{2 E j}, T_{2(0(m)) j}$, and $T_{2 S j}$ in equations (18), (19), and (20) can be expressed in terms of $e^{\prime} s$ as
$T_{2 E j}=\bar{Y}^{E R S S_{e}}\left(1+e_{y}\right)\left[w_{1}\left(1+\lambda_{a} e_{x}\right)^{-\alpha_{1}}\left(1+\lambda_{b} e_{z}\right)^{\alpha_{2}}+w_{2}\left(1-g \lambda_{a} e_{x}\right)^{\delta_{1}}\left(1-g \lambda_{b} e_{z}\right)^{-\delta_{2}}\right]$
$T_{2(0(m)) j}=\bar{Y}^{E R S S_{0(m)}}\left(1+e_{y}\right)\left[w_{1}\left(1+\lambda_{a} e_{x}\right)^{-\alpha_{1}}\left(1+\lambda_{b} e_{z}\right)^{\alpha_{2}}+w_{2}\left(1-g \lambda_{a} e_{x}\right)^{\delta_{1}}\left(1-g \lambda_{b} e_{z}\right)^{\delta^{\delta_{2}}}\right]$
$T_{2 S j}=\bar{Y}^{S R S}\left(1+e_{0}\right)\left[w_{1}\left(1+\lambda_{a} e_{1}\right)^{-\alpha_{1}}\left(1+\lambda_{b} e_{2}\right)^{\alpha_{2}}+w_{2}\left(1-g \lambda_{a} e_{1}\right)^{\delta_{1}}\left(1-g \lambda_{b} e_{2}\right)^{\delta^{\delta_{2}}}\right]$
where $\lambda_{a}=\frac{a * \bar{X}_{E R S S}}{a * \bar{X}_{E R S S}+\rho}, \lambda_{1}=\frac{\bar{X}_{E R S S}}{\bar{X}_{E R S S}+\rho}, \quad \lambda_{b}=\frac{b * \bar{Z}_{E R S S}}{b * \bar{Z}_{E R S S}+\rho}, \lambda_{2}=\frac{\bar{Z}_{E R S S}}{\bar{Z}_{E R S S}+\rho}$.
To validate the second order of approximation, we assume that the sample size is large
enough to get $\left|\lambda_{i} e_{i}\right|<1$ and $\left|g \lambda_{i} e_{i}\right|<1$, so that $\left(1+\lambda_{a} e_{x}\right)^{-\alpha_{1}}$, $\left(1+\lambda_{b} e_{z}\right)^{\alpha_{2}},\left(1-g \lambda_{a} e_{x}\right)^{\delta_{1}}$, and $\left(1-g \lambda_{b} e_{z}\right)^{-\delta_{2}}$ can be expanded to the second order of approximation of Taylor's series. Thus; $T_{2 E j}$ in equation (22) can now be expanded as:
$T_{2 E j}=$

$$
\begin{aligned}
& \bar{Y}^{E R S S_{e}}\left(1+e_{y}\right)\left[w _ { 1 } \left(\left(1-\alpha_{1} \lambda_{a} e_{x}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} e_{x}^{2}-\cdots\right)\left(\left(1+\alpha_{2} g \lambda_{b} e_{x}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} e_{z}^{2}+\cdots\right)\right]+\right.\right. \\
& {\left[w _ { 2 } \left(\left(1+g \delta_{1} \lambda_{a} e_{x}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}+\cdots\right)\left(\left(1-g \delta_{2} \lambda_{b} e_{z}-\frac{\delta_{2}\left(\alpha_{2}-1\right)}{2} g^{2} \lambda_{b}^{2} e_{z}^{2}+\cdots\right)\right]\right.\right.}
\end{aligned}
$$

$T_{2 E j}=\bar{Y}^{E R S S} S_{e}\left(1+e_{y}\right)\left[w_{1}\left(1+\alpha_{2} \lambda_{b} g e_{z}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} e_{z}^{2}-\alpha_{1} \lambda_{a} e_{x}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g e_{x} e_{z}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} e_{x}^{2}+\cdots\right]+\right.$ $\left[w_{2}\left(\left(1-\delta_{2} \lambda_{b} g e_{z}-\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{b}^{2} e_{z}^{2}+g \delta_{1} \lambda_{a} e_{x}-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{y} e_{z}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}+\cdots\right)\right]\right.$

Expanding the right-hand side of (25) and ignoring terms of $e^{\prime} s$ with exponents higher than two, gives:
$T_{2 E i}=\bar{Y}^{E R S S e}\left[w_{1}\left(1+e_{y}+\alpha_{2} \lambda_{b} g e_{z}+\alpha_{2} \lambda_{b} g e_{y} e_{z}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} e_{z}^{2}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\right.\right.$
$-\alpha_{1} \lambda_{a} e_{x}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g e_{x} e_{z}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} e_{x}^{2}+\cdots w_{2}\left(1+e_{y}-\alpha_{2} \lambda_{b} g e_{z}-\alpha_{2} \lambda_{b} g e_{y} e_{z}-\right.$
$\left.\left.\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} e_{z}^{2}+g \delta_{1} \lambda_{a} g e_{y} e_{x}+\delta_{1} \lambda_{a} g e_{x}-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}+\cdots\right)\right]$
$\left(T_{2 E i}-\bar{Y}^{\text {ERSSe }}\right)=$
$\bar{Y}^{\text {ERSSe }}\left[w_{1}\left(1+e_{y}+\alpha_{2} \lambda_{b} g e_{z}+\alpha_{2} \lambda_{b} g e_{y} e_{z}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} e_{z}^{2}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\alpha_{1} \lambda_{a} e_{x}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g e_{x} e_{z}+\right.\right.$ $\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} e_{x}^{2}+w_{2}\left(1+e_{y}-\alpha_{2} \lambda_{b} g e_{z}-\alpha_{2} \lambda_{b} g e_{y} e_{z}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} e_{z}^{2}+\delta_{1} \lambda_{a} g e_{y} e_{x}+\delta_{1} \lambda_{a} g e_{x}-\right.$ $\left.\left.\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}\right)-1\right]$

Taking the mathematical expectations of both sides (27) yields the Bias of the estimator $T_{2 E j}$ to the second order of approximation as:
$\left.B\left(T_{2 E i}\right)=\left[E\left(T_{2 E i}\right)-\bar{Y}^{E R S S e}\right)\right]=$

$$
\begin{align*}
& {\left.\left[E\left(T_{2 E i}\right)-\bar{Y}^{E R S S e}\right)\right] }= \\
& \frac{\bar{Y}^{E R S S e}}{2 m}
\end{align*}\left(\begin{array}{c}
w_{1}\left(2 m-\alpha_{1} \lambda_{a} C_{x y}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} C_{z}^{2}+\alpha_{2} \lambda_{b} g C_{y z}\right. \tag{28}\\
\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g C_{x z}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} C_{x}^{2} \\
+w_{2}\binom{2 m+g \delta_{1} \lambda_{a} g C_{x y}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}-\alpha_{2} \lambda_{b} g C_{y z}}{-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} C_{x}^{2}}-2 m
\end{array}\right)
$$

By taking the Squares of both sides of (27) and ignoring terms of $e^{\prime} s$ with exponents higher than two gives:

$$
\begin{align*}
& \left(T_{2 E i}-\bar{Y}^{E R S S e}\right)^{2}= \\
& \left(\bar{Y}^{E R S S e}\right)^{2}\left(\begin{array}{c}
w_{1}^{2}\left(1+e_{y}+\alpha_{2} \lambda_{b} e_{y} e_{z}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} e_{z}^{2}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} e_{x} e_{z}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} e_{x}^{2}\right. \\
+e_{y}^{2}+\alpha_{2} \lambda_{b} g e_{y} e_{z}-\alpha_{1} \lambda_{a} e_{y} e_{x}+\alpha_{2} \lambda_{b} e_{y} e_{z}+\alpha_{2} \lambda_{b} e_{y} e_{z}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} e_{x} e_{z}+\alpha_{2} \lambda_{b} e_{y} e_{z} \\
+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{a}^{2} e_{z}^{2}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} e_{x} e_{z}+\alpha_{1}^{2} \lambda_{a}^{2} e_{x}^{2}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} e_{x} e_{z}
\end{array}\right) \\
& +\left(\bar{Y}^{E R S S e}\right)^{2} w_{2}^{2}\left[\left(1-e_{y}-\delta_{2} \lambda_{b} g e_{y} e_{z}-\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{a}^{2} e_{z}^{2}+\delta_{1} \lambda_{a} g e_{y} e_{x}+\delta_{1} \lambda_{a} g e_{x}-\right.\right. \\
& \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}+e_{y}^{2}-\delta_{2} \lambda_{b} g e_{y} e_{z}+\delta_{1} \lambda_{a} g e_{y} e_{x}-\delta_{2} \lambda_{b} g e_{y} e_{z}+\delta_{2} \lambda_{b} g e_{z}- \\
& \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}-\delta_{2} \lambda_{b} g e_{y} e_{z}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} e_{z}^{2}+\delta_{1} \lambda_{a} g e_{y} e_{x}+\delta_{1} \lambda_{a} g e_{y} e_{x}- \\
& \left.\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}++\delta_{1} \lambda_{a} g e_{y} e_{x}-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}\right] \\
& +2\left(\bar{Y}^{E R S S e}\right)^{2} w_{1} w_{2}\left(1-\delta_{2} \lambda_{b} g e_{y} e_{z}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} e_{z}^{2}+\delta_{1} \lambda_{a} g e_{y} e_{x}-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}+\right. \\
& \frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}+e_{y}^{2}-\delta_{2} \lambda_{b} g e_{y} e_{z}+\delta_{1} \lambda_{a} g e_{y} e_{x}-\alpha_{1} \lambda_{a} e_{y} e_{x}+\alpha_{2} \lambda_{2} e_{y} e_{z}-\alpha_{2} \delta_{2} \lambda_{b} g e_{y} e_{z}+ \\
& \alpha_{2} \delta_{1} \lambda_{a} \lambda_{b} g e_{x} e_{z}+\alpha_{2} \lambda_{b} g e_{y} e_{z}+\alpha_{2} \lambda_{2} e_{y} e_{z}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g e_{x} e_{z}+ \\
& \left.\alpha_{1} \delta_{1} g \lambda_{a}^{2} e_{x}^{2}--\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g e_{x} e_{z}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{1}^{2} e_{x}^{2}\right)-2\left(\bar{Y}^{E R S S e}\right)^{2} w_{1}\left(1+\alpha_{2} \lambda_{b} e_{y} e_{z}+\right. \\
& \left.\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{a}^{2} e_{z}^{2}-\alpha_{1} \lambda_{a} e_{y} e_{x}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} e_{x} e_{z}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} e_{x}^{2}\right) \\
& -2\left(\bar{Y}^{E R S S e}\right)^{2} w_{2}\left(1-\delta_{2} \lambda_{b} g e_{y} e_{z}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} e_{z}^{2}+\delta_{1} \lambda_{a} g e_{y} e_{x}-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} e_{x} e_{z}+\right. \\
& \left.\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} e_{x}^{2}\right)+\left(\bar{Y}^{\text {ERSSe }}\right)^{2} \tag{29}
\end{align*}
$$

The MSE of $T_{2 E j}$ is obtained by taking the mathematical expectations of both sides of (29) to the second order of approximation to yield:

$$
\begin{aligned}
& \operatorname{MSE}\left(T_{2 E j}\right)=E\left(T_{2 E j}-\bar{Y}^{E R S S e}\right)^{2}= \\
& \left.\begin{array}{rl}
\left(\bar{Y}^{E R S S e}\right.
\end{array}\right)^{2} w_{1}^{2}\left[1+C_{y}^{2}+\alpha_{1}\left(\alpha_{1}+1\right) \lambda_{a}^{2} C_{x}^{2}+\alpha_{2}\left(\alpha_{2}-1\right) \lambda_{b}^{2} C_{z}^{2}-4 \alpha_{1} \lambda_{a} e_{y} e_{x}+4 \alpha_{2} \lambda_{b} C_{y z}-4 \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right] \\
& +\left(\bar{Y}^{E R S S}\right)^{2} w_{2}^{2}\left[1+C_{y}^{2}+\delta_{1}\left(\delta_{1}-1\right) g^{2} \lambda_{a}^{2} C_{x}^{2}-\delta_{2}\left(\delta_{2}+1\right) g^{2} \lambda_{b}^{2} C_{z}^{2}+4 \delta_{1} \lambda_{a} g C_{x y}-4 \delta_{2} \lambda_{b} g C_{y z}\right. \\
& \left.\quad \quad-4 \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}\right]
\end{aligned}
$$

$$
+2\left(\bar{Y}^{\text {ERSSe }}\right)^{2} w_{1} w_{2}\left[1+C_{y}^{2}+\left[\alpha_{1}\left(\alpha_{1}+1\right)+\delta_{1}\left(\delta_{1}-1\right) g^{2}+2 \alpha_{1} \delta_{1}\right] \frac{\lambda_{a}^{2} C_{x}^{2}}{2}\right.
$$

$$
+\left[\alpha_{2}\left(\alpha_{2}-1\right)-\delta_{2}\left(\delta_{2}+1\right) g^{2}+2 \alpha_{2} \delta_{2}\right] \frac{\lambda_{b}^{2} C_{z}^{2}}{2}-2\left(\alpha_{1}-\delta_{1} g\right) \lambda_{a} C_{x y}+2\left(\alpha_{2}-\delta_{2} g\right) \lambda_{b} C_{y z}
$$

$$
\left.-\left(2 \alpha_{1} \alpha_{2}+\delta_{1} \delta_{2} g-\alpha_{2} \delta_{1}\right) \lambda_{a} \lambda_{b} C_{x z}\right]
$$

$$
-2\left(\bar{Y}^{E R S S e}\right)^{2} w_{1}\left[1+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} C_{z}^{2}-\alpha_{1} \lambda_{a} C_{x y}+\alpha_{2} \lambda_{b} C_{y z}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right]
$$

$$
-2\left(\bar{Y}^{E R S S e}\right)^{2} w_{2}\left[1-\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} C_{x}^{2}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}+\delta_{1} \lambda_{a} g C_{x y}-\delta_{2} \lambda_{b} g C_{y z}-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}\right]
$$

$$
+\left(\bar{Y}^{\text {ERSSe }}\right)^{2}
$$

$$
\operatorname{MSE}\left(T_{2 E j}\right)=E\left(T_{2 E j}-\bar{Y}^{E R S S e}\right)^{2}=
$$

$$
\begin{equation*}
\left(\bar{Y}^{E R S S e}\right)^{2}\left[1+w_{1}^{2} D_{1}^{2}+w_{2}^{2} D_{2}^{2}+2 w_{1} w_{2} D_{3}-2 w_{1} D_{4}-2 w_{2} D_{5}\right] \tag{30}
\end{equation*}
$$

where
$D_{1}=$
$[1+$

$$
\begin{gather*}
\frac{1}{2 m}\left(C_{y}^{2}+\alpha_{1}\left(\alpha_{1}+1\right) \lambda_{a}^{2} C_{x}^{2}+\alpha_{2}\left(\alpha_{2}-1\right) \lambda_{b}^{2} C_{z}^{2}-4 \alpha_{1} \lambda_{a} C_{y x}+4 \alpha_{2} \lambda_{b} C_{y z}-\right. \\
\left.\left.4 \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right)\right] \tag{31}
\end{gather*}
$$

$$
\begin{align*}
& D_{2}=\left[1+\frac{1}{2 m}\left(C_{y}^{2}+\delta_{1}\left(\delta_{1}-1\right) g^{2} \lambda_{a}^{2} C_{x}^{2}-\delta_{2}\left(\delta_{2}+1\right) g^{2} \lambda_{b}^{2} C_{z}^{2}+4 \delta_{1} \lambda_{a} g C_{x y}-4 \delta_{2} \lambda_{b} g C_{y z}-\right.\right. \\
& \left.\left.4 \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}\right)\right] \tag{32}
\end{align*}
$$

$$
D_{3}=
$$

$$
\left[1+\frac{1}{2 m}\left(C_{y}^{2}+\left[\alpha_{1}\left(\alpha_{1}+1\right)+\delta_{1}\left(\delta_{1}-1\right) g^{2}+2 \alpha_{1} \delta_{1}\right] \frac{\lambda_{a}^{2} c_{x}^{2}}{2}+\left[\alpha_{2}\left(\alpha_{2}-1\right)-\quad \delta_{2}\left(\delta_{2}+\right.\right.\right.\right.
$$

$$
\text { 1) } \left.g^{2}+2 \alpha_{2} \delta_{2}\right] \frac{\lambda_{b}^{2} C_{z}^{2}}{2}-2\left(\alpha_{1}-\delta_{1} g\right) \lambda_{a} C_{x y}+2\left(\alpha_{2}-\delta_{2} g\right) \lambda_{b} C_{y z}-
$$

$$
\left(2 \alpha_{1} \alpha_{2}+\delta_{1} \delta_{2} g-\right.
$$

$$
\begin{equation*}
\left.\left.\left.\alpha_{2} \delta_{1}\right) \lambda_{a} \lambda_{b} C_{x z}\right)\right] \tag{33}
\end{equation*}
$$

$D_{4}=$
$[1+$

$$
\begin{gather*}
\frac{1}{2 m}\left(\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} C_{z}^{2}-\alpha_{1} \lambda_{a} C_{y x}+\alpha_{2} \lambda_{b} C_{y z}-\right. \\
\left.\left.\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right)\right] \tag{34}
\end{gather*}
$$

$D_{5}=$
$[1+$
$\frac{1}{2 m}\left(-\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} C_{x}^{2}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}+\delta_{1} \lambda_{a} g C_{x y}-\delta_{2} \lambda_{b} g C_{y z}-\right.$ $\left.\left.\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}\right)\right]$

In order to derive the optimum MSE of $T_{2 E j}$ we differentiate (30) with respect to w_{1} and w_{2} and equate the results to zero. Thus:

$$
\begin{align*}
& \frac{\partial\left[M S E\left(T_{2 E j}\right)\right]}{\partial w_{1}}=2 w_{1} D_{1}+2 w_{2} D_{3}-2 D_{4}=0 \tag{36}\\
& \frac{\partial\left[M S E\left(T_{2 E j}\right)\right]}{\partial w_{2}}=2 w_{2} D_{2}+2 w_{1} D_{3}-2 D_{5}=0 \tag{37}
\end{align*}
$$

Solving (36) and (37) simultaneously we have:

$$
\begin{gather*}
w_{1} D_{1}+w_{1} D_{3}+w_{2} D_{2}+w_{2} D_{3}-\left(D_{4}+D_{5}\right)=0 \\
w_{1}\left(D_{1}+D_{3}\right)+w_{2}\left(D_{2}+D_{3}\right)=\left(D_{4}+D_{5}\right) \tag{38}
\end{gather*}
$$

From (36) ,

$$
\begin{equation*}
w_{1}=\left(\frac{D_{4}-w_{2} D_{3}}{D_{1}}\right) \tag{39}
\end{equation*}
$$

Substituting (39) into (38), we have

$$
\left(\frac{D_{4}-w_{2} D_{3}}{D_{1}}\right)\left(D_{1}+D_{3}\right)+w_{2}\left(D_{2}+D_{3}\right)=\left(D_{4}+D_{5}\right)
$$

By making w_{2} subject of the expression, we have

$$
\begin{equation*}
w_{2}=\left(\frac{D_{1} D_{5}-D_{3} D_{4}}{D_{1} D_{2}-D_{3}^{2}}\right) \tag{40}
\end{equation*}
$$

By substituting (40) into (39) or (37), gives w_{1} as

$$
\begin{equation*}
w_{1}=\left(\frac{D_{2} D_{4}-D_{3} D_{5}}{D_{1} D_{2}-D_{3}^{2}}\right) \tag{41}
\end{equation*}
$$

The $M S E$ of $T_{2 E j}$ in (30) is minimized for

$$
\left.\begin{array}{l}
w_{1}=\left(\frac{D_{2} D_{4}-D_{3} D_{5}}{D_{1} D_{2}-D_{3}^{2}}\right)=w_{1 E 0} \tag{42}\\
w_{2}=\left(\frac{D_{1} D_{5}-D_{3} D_{4}}{D_{1} D_{2}-D_{3}^{2}}\right)=w_{2 E 0}
\end{array}\right\}
$$

By substituting (42) into (30) yields the optimum or minimum $M S E$ of $T_{2 E j}$ as

$$
\begin{align*}
& M S E\left(T_{2 E j}\right)_{o p t}= \bar{Y}^{2^{E R S S e}}\left[1+w_{1 E 0}^{2} D_{1}+w_{2 E 0}^{2} D_{2}+2 w_{1 E 0} w_{2 E 0} D_{3}-2 w_{1 E 0} D_{4}-2 w_{2 E 0} D_{5}\right] \\
& M S E\left(T_{2 E j}\right)_{o p t}=\bar{Y}^{2 E R S S e}\left[1+\left(\frac{D_{2} D_{4}-D_{3} D_{5}}{D_{1} D_{2}-D_{3}^{2}}\right)^{2} D_{1}+\left(\frac{D_{1} D_{5}-D_{3} D_{4}}{D_{1} D_{2}-D_{3}^{2}}\right)^{2} D_{2}+2\left(\frac{D_{2} D_{4}-D_{3} D_{5}}{D_{1} D_{2}-D_{3}^{2}}\right)\left(\frac{D_{1} D_{5}-D_{3} D_{4}}{D_{1} D_{2}-D_{3}^{2}}\right) D_{3}\right. \\
&\left.-2\left(\frac{D_{2} D_{4}-D_{3} D_{5}}{D_{1} D_{2}-D_{3}^{2}}\right) D_{4}-2\left(\frac{D_{1} D_{5}-D_{3} D_{4}}{D_{1} D_{2}-D_{3}^{2}}\right) D_{5}\right] \\
& M S E\left(T_{2 E j}\right)_{o p t}=\bar{Y}^{2 E R S S e}\left[1+\frac{\left(2 D_{3} D_{4} D_{5}-D_{2} D_{4}^{2}-D_{1} D_{5}^{2}\right)}{\left(D_{1} D_{2}-D_{3}^{2}\right)}\right] \tag{43}
\end{align*}
$$

3.3.1 Bias, MSE and Optimal MSE of $\boldsymbol{T}_{2(0(m)) j}$

Similarly, to obtain the bias and Mean Square Error of the class of estimators $T_{2(0(m)) j}$ we write

$$
\begin{align*}
& \bar{y}^{E R S S_{O(m)}}=\bar{Y}^{E R S S_{O(m)}}\left(1+e_{y}\right) \\
& \bar{x}^{E R S S_{O(m)}}=\bar{X}^{E R S S_{O(m)}}\left(1+e_{x}\right) \\
& \bar{z}^{E R S S_{0(m)}}=\bar{Z}^{E R S S_{0(m)}}\left(1+e_{z}\right) \\
& E\left(e_{y}\right)=E\left(e_{x}\right)=E\left(e_{z}\right)=0 \\
& E\left(e_{y}^{2}\right)=\theta \frac{\operatorname{Var}\left(\bar{y}^{E R S S_{0}(m)}\right)}{\left(\mu_{y}\right)^{2}}=C_{y}^{2} \\
& \left.E\left(e_{x}^{2}\right)=\theta \frac{\operatorname{Var}\left(\bar{x}^{E R S S}\right.}{\left(\mu_{x}\right)^{2}}\right)=C_{x}^{2} \\
& E\left(e_{Z}^{2}\right)=\theta \frac{\operatorname{Var}\left(\bar{z}^{R R S S}\right.}{\left.\left(\mu_{z}\right)^{2}\right)}{ }^{2} C_{Z}^{2} \\
& \Delta_{x y}=\left(\mu_{x(i)}-\mu_{x}\right)\left(\mu_{y[i]}-\mu_{y}\right) \\
& \Delta_{y z}=\left(\mu_{y[1]}-\mu_{y}\right)\left(\mu_{z(i)}-\mu_{z}\right) \\
& \Delta_{x z}=\left(\mu_{x(1)}-\mu_{x}\right)\left(\mu_{z(i)}-\mu_{z}\right) \tag{21b}\\
& E\left(e_{y} e_{x}\right)=C_{x y}=\theta\left(\rho_{x y} \cdot \frac{\left.\sqrt{\operatorname{Var}\left(\bar{y}^{E R S S}(m)\right.}\right)}{\mu_{y}} \cdot \frac{\sqrt{\operatorname{Var}\left(x^{E R S S} S_{0(m)}\right)}}{\mu_{x}}-\sum_{i=1}^{m} \Delta_{x y}\right)=\rho_{y x} C_{y} C_{x}-\theta \phi_{1} \\
& E\left(e_{y} e_{z}\right)=C_{y z}=\theta\left(\rho_{y z} \cdot \frac{\sqrt{\operatorname{Var(~}\left(\bar{y}^{\left.E R S S_{0(m)}\right)}\right.}}{\mu_{y}} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{z}^{\left.E R S S_{0(m)}\right)}\right.}}{\mu_{z}}-\sum_{i=1}^{m} \Delta_{y z}\right)=\rho_{y z} C_{y} C_{z}-\theta \phi_{2} \\
& \begin{array}{c}
E\left(e_{x} e_{z}\right)=C_{x z}=\theta\left(\rho_{x z} \cdot \frac{\sqrt{\operatorname{Var(}\left(x^{\left.E R S S_{0(m)}\right)}\right.}}{\mu_{x}} \cdot \frac{\sqrt{\operatorname{Var(z_{z}}{ }^{\left.E R S S_{0(m)}\right)}}}{\mu_{z}}-\sum_{i=1}^{m} \Delta_{x z}\right)=\rho_{x z} C_{x} C_{z}-\theta \phi_{3} \\
\phi_{1}=\sum_{i=1}^{m} \Delta_{x y}
\end{array} \\
& \phi_{2}=\sum_{i=1}^{m} \Delta_{y z} \\
& \phi_{3}=\sum_{i=1}^{m} \Delta_{x z} \\
& \theta=\left(\frac{m-1}{2 m^{2}}\right)
\end{align*}
$$

In like manners, the bias, MSE, and optimal MSE of $\boldsymbol{T}_{2(\mathbf{0}(\boldsymbol{m})) j}$ the odd median case of ERSS was obtained and presented as follows:
$B\left(\boldsymbol{T}_{\mathbf{2 (0}(\boldsymbol{m}) \mathrm{j}}\right)=E\left[\left(\boldsymbol{T}_{\mathbf{2 (0 (m)) j}}\right)-\bar{Y}^{E R S S_{0(m)}}\right]=$

$$
\begin{align*}
& \boldsymbol{B}\left(\boldsymbol{T}_{\mathbf{2}(\mathbf{0}(\boldsymbol{m})) \mathbf{j}}\right)=E\left[\left(\boldsymbol{T}_{\mathbf{2}(\mathbf{0}(\boldsymbol{m})) \mathbf{j}}\right)-\bar{Y}^{E R S S_{0(m)}}\right]= \\
& \theta \bar{Y}^{E R S S_{0(m)}}\left(\begin{array}{c}
w_{1}\left(\frac{1}{\theta}-\alpha_{1} \lambda_{a} C_{x y}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} C_{z}^{2}+\alpha_{2} \lambda_{b} g C_{y z}\right. \\
\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g C_{x z}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} C_{x}^{2} \\
+w_{2}\binom{\frac{1}{\theta}+g \delta_{1} \lambda_{a} g C_{x y}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}-\alpha_{2} \lambda_{b} g C_{y z}}{-\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} C_{x}^{2}}-\frac{1}{\theta}
\end{array}\right) \tag{44}
\end{align*}
$$

$\operatorname{MSE}\left(T_{2(0(m)) j}\right)=E\left(\boldsymbol{T}_{\mathbf{2 (0 (m)}) \boldsymbol{j}}-\bar{Y}^{E R S S_{0(m)}}\right)^{2}=$
$\left(\bar{Y}^{E R S S_{0(m)}}\right)^{2}\left[1+w_{1}^{2} J_{1}^{2}+w_{2}^{2} J_{2}^{2}+2 w_{1} w_{2} J_{3}-2 w_{1} J_{4}-2 w_{2} J_{5}\right]$
where
$J_{1}=$
$[1+$

$$
\begin{gather*}
\theta\left(C_{y}^{2}+\alpha_{1}\left(\alpha_{1}+1\right) \lambda_{a}^{2} C_{x}^{2}+\alpha_{2}\left(\alpha_{2}-1\right) \lambda_{b}^{2} C_{z}^{2}-4 \alpha_{1} \lambda_{a} C_{y x}+4 \alpha_{2} \lambda_{b} C_{y z}-\right. \\
\left.\left.4 \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right)\right] \tag{46}
\end{gather*}
$$

$J_{2}=\left[1+\theta\left(C_{y}^{2}+\delta_{1}\left(\delta_{1}-1\right) g^{2} \lambda_{a}^{2} C_{x}^{2}-\delta_{2}\left(\delta_{2}+1\right) g^{2} \lambda_{b}^{2} C_{z}^{2}+4 \delta_{1} \lambda_{a} g C_{x y}-4 \delta_{2} \lambda_{b} g C_{y z}-\right.\right.$

$$
\begin{equation*}
\left.\left.4 \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}\right)\right] \tag{47}
\end{equation*}
$$

$$
\begin{align*}
& J_{3}=\left[1+\theta\left(C_{y}^{2}+\left[\alpha_{1}\left(\alpha_{1}+1\right)+\delta_{1}\left(\delta_{1}-1\right) g^{2}+2 \alpha_{1} \delta_{1}\right] \frac{\lambda_{a}^{2} C_{x}^{2}}{2}+\left[\alpha_{2}\left(\alpha_{2}-1\right)-\delta_{2}\left(\delta_{2}+1\right) g^{2}+\right.\right.\right. \\
& \left.2 \alpha_{2} \delta_{2}\right] \frac{\lambda_{b}^{2} C_{z}^{2}}{2}-2\left(\alpha_{1}-\delta_{1} g\right) \lambda_{a} C_{x y}+2\left(\alpha_{2}-\delta_{2} g\right) \lambda_{b} C_{y z}-\left(2 \alpha_{1} \alpha_{2}+\delta_{1} \delta_{2} g-\right. \\
& \left.\left.\left.\alpha_{2} \delta_{1}\right) \lambda_{a} \lambda_{b} C_{x z}\right)\right] \tag{48}\\
& J_{4}=\left[1+\theta\left(\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} C_{z}^{2}-\alpha_{1} \lambda_{a} C_{y x}+\alpha_{2} \lambda_{b} C_{y z}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right)\right] \tag{165}\\
& J_{5}= \\
& {[1-} \\
& \left.\theta\left(\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} C_{x}^{2}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}+\delta_{1} \lambda_{a} g C_{x y}-\delta_{2} \lambda_{b} g C_{y z}-\quad \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{x z}\right)\right] \tag{49}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{MSE}\left(T_{2(0(m)) j}\right)_{o p t}=\left(\bar{Y}^{E R S S_{0(m)}}\right)^{2}\left[1+\frac{\left(2 J_{3} J_{4} J_{5}-J_{2} J_{4}^{2}-J_{1} J_{5}^{2}\right)}{\left(J_{1} J_{2}-J_{3}^{2}\right)}\right] \tag{50}
\end{equation*}
$$

3.3.2 Bias, MSE and Optimal MSE of $\boldsymbol{T}_{2 S j}$

Also, to obtain the bias and Mean Square Error of the class of estimators $T_{2 S j}$ we write

$$
\left.\begin{array}{c}
\bar{y}^{S R S}=\bar{Y}^{S R S}\left(1+e_{0}\right) \\
\bar{x}^{S R S}=\bar{X}^{S R S}\left(1+e_{1}\right) \\
\bar{z}^{S R S}=\bar{Z}^{S R S}\left(1+e_{2}\right) \\
E\left(e_{0}\right)=E\left(e_{1}\right)=E\left(e_{2}\right)=0 \\
E\left(e_{y}^{2}\right)=\left(\frac{1-f}{m}\right) \frac{\operatorname{Var}\left(\bar{y}^{S R S}\right)}{\left(\mu_{y}\right)^{2}}=C_{0}^{2} \\
E\left(e_{x}^{2}\right)=\left(\frac{1-f}{m}\right) \frac{\operatorname{Var}\left(\bar{x}^{S R S}\right)}{\left(\mu_{x}\right)^{2}}=C_{1}^{2} \\
E\left(e_{z}^{2}\right)=\left(\frac{1-f}{m}\right) \frac{\operatorname{Var}\left(\bar{z}^{S R S}\right)}{\left(\mu_{z}\right)^{2}}=C_{2}^{2} \tag{21c}\\
E\left(e_{0} e_{1}\right)=C_{01}=\left(\frac{1-f}{m}\right) \rho_{01} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{y}^{S R S}\right)}}{\mu_{y}} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{x}^{S R S}\right)}}{\mu_{x}}=\rho_{01} C_{0} C_{1} \\
E\left(e_{0} e_{2}\right)=C_{02}=\left(\frac{1-f}{m}\right) \rho_{02} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{y}^{S R S}\right)}}{\mu_{y}} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{z}^{S R S}\right)}}{\mu_{z}}=\rho_{02} C_{0} C_{2} \\
E\left(e_{1} e_{2}\right)==C_{12}=\left(\frac{m}{1-f}\right) \rho_{12} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{x}^{S R S}\right)}}{\mu_{x}} \cdot \frac{\sqrt{\operatorname{Var}\left(\bar{z}^{S R S}\right)}}{\mu_{z}}=\rho_{12} C_{1} C_{2}
\end{array}\right\}
$$

Similarly, the bias, MSE, and optimal MSE of $\boldsymbol{T}_{\mathbf{2 S j}}$ the case of SRS was obtained and presented as follows:
$\boldsymbol{B}\left(T_{2 S j}\right)=\left[E\left(T_{2 S j}\right)-\bar{Y}^{S R S}\right]=$
$\left(\frac{1-f}{m}\right) \bar{Y}^{S R S}\left(\begin{array}{c}w_{1}\left(\left(\frac{m}{1-f}\right)-\alpha_{1} \lambda_{a} C_{01}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} C_{2}^{2}+\alpha_{2} \lambda_{b} g C_{02}\right. \\ \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} g C_{12}+\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} C_{1}^{2} \\ +w_{2}\left(\begin{array}{c}\left(\frac{m}{1-f}\right)+g \delta_{1} \lambda_{a} g C_{021}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}-\alpha_{2} \lambda_{b} g C_{02} \\ -\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{12}+\frac{\delta_{1}\left(\delta_{1}-1\right)}{2} g^{2} \lambda_{a}^{2} C_{1}^{2} \\ \text { IJSER © 2022 } \\ \text { http://WWw.ijser.org }\end{array}\right.\end{array}\right)-\left(\frac{m}{1-f)}\right)$

$$
\begin{align*}
& \operatorname{MSE}\left(T_{2 S j}\right)=E\left(T_{2 S j}-\bar{Y}^{S R S}\right)^{2}= \\
& \qquad\left(\bar{Y}^{S R S}\right)^{2}\left[1+w_{1}^{2} L_{1}^{2}+w_{2}^{2} L_{2}^{2}+2 w_{1} w_{2} L_{3}-2 w_{1} L_{4}-2 w_{2} L_{5}\right] \tag{52}
\end{align*}
$$

where

$$
\begin{gather*}
L_{1}=\left[1+\left(\frac{1-f}{m}\right)\left(C_{0}^{2}+\alpha_{1}\left(\alpha_{1}+1\right) \lambda_{a}^{2} C_{1}^{2}+\alpha_{2}\left(\alpha_{2}-1\right) \lambda_{b}^{2} C_{2}^{2}-4 \alpha_{1} \lambda_{a} C_{y x}+4 \alpha_{2} \lambda_{b} C_{20}-\right.\right. \\
\left.\left.4 \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{21}\right)\right] \tag{53}\\
L_{2}=\left[1+\left(\frac{1-f}{m}\right)\left(C_{0}^{2}+\delta_{1}\left(\delta_{1}-1\right) g^{2} \lambda_{a}^{2} C_{1}^{2}-\delta_{2}\left(\delta_{2}+1\right) g^{2} \lambda_{b}^{2} C_{2}^{2}+4 \delta_{1} \lambda_{a} g C_{10}-4 \delta_{2} \lambda_{b} g C_{20}-\right.\right. \\
\left.\left.4 \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{21}\right)\right] \tag{54}\\
L_{3}=\left[1+\left(\frac{1-f}{m}\right)\left(C_{0}^{2}+\left[\alpha_{1}\left(\alpha_{1}+1\right)+\delta_{1}\left(\delta_{1}-1\right) g^{2}+2 \alpha_{1} \delta_{1}\right] \frac{\lambda_{a}^{2} c_{1}^{2}}{2}+\left[\alpha_{2}\left(\alpha_{2}-1\right)-\right.\right.\right. \\
\left.\delta_{2}\left(\delta_{2}+1\right) g^{2}+2 \alpha_{2} \delta_{2}\right] \frac{\lambda_{b}^{2} c_{2}^{2}}{2}-2\left(\alpha_{1}-\delta_{1} g\right) \lambda_{a} C_{10}+2\left(\alpha_{2}-\delta_{2} g\right) \lambda_{b} C_{20}- \\
\left.\left.\quad\left(2 \alpha_{1} \alpha_{2}+\delta_{1} \delta_{2} g-\alpha_{2} \delta_{1}\right) \lambda_{a} \lambda_{b} C_{21}\right)\right] \tag{55}\\
L_{4}=\left[1+\left(\frac{1-f}{m}\right)\left(\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{2} \lambda_{a}^{2} C_{1}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{b}^{2} C_{2}^{2}-\alpha_{1} \lambda_{a} C_{10}+\alpha_{2} \lambda_{b} C_{20}-\alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{21}\right)\right] \\
L_{5}=\left[1+\left(\frac{1-f}{m}\right)\left(-\frac{\delta_{1}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{a}^{2} C_{1}^{2}-\frac{\delta_{2}\left(\delta_{2}+1\right)}{2} g^{2} \lambda_{b}^{2} C_{1}^{2}+\delta_{1} \lambda_{a} g C_{10}-\delta_{2} \lambda_{b} g C_{20}-\right.\right. \tag{56}\\
\left.\left.\delta_{1} \delta_{2} \lambda_{a} \lambda_{b} g^{2} C_{21}\right)\right] \tag{57}
\end{gather*}
$$

TABLE 4
Members of $T_{2(0(m)) j}, j=1,2, \ldots 16$ with their MSE

S/N	$T_{2(0(m)) j}$	MSE
1	$T_{2(0(m)) 1}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}\right)$
2	$T_{2(0(m))^{2}}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+C_{x}^{2}-2 C_{x y}\right)$
3	$T_{2(0(m))^{3}}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+C_{z}^{2}+2 C_{y z}\right)$
4	$T_{2(0(m)) 4}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+g^{2} C_{x}^{2}+2 g C_{x y}\right)$
5	$T_{2(0(m))^{5}}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+g^{2} C_{z}^{2}-2 g C_{y z}\right)$
6	$T_{2(0(m)) 6}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 C_{x}^{2}+C_{z}^{2}-2 C_{x y}+2 C_{y z}-2 C_{x z}\right)$
7	$T_{2(0(m)) 7}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 g^{2} C_{z}^{2}+g^{2} C_{x}^{2}-4 g C_{x y}-4 g C_{y z}+4 g^{2} C_{x z}\right)$
8	$T_{2(0(m)) 8}$	$\begin{aligned} 1 / 2 m & \left(\bar{Y}^{\text {ERSSe }}\right)^{2} \\ & \left(C_{y}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} C_{z}^{2}-2 \alpha_{1} C_{x y}+2 \alpha_{2} C_{y z}\right. \\ & \left.-2 \alpha_{1} \alpha_{2} C_{x z}\right) \end{aligned}$
9	$T_{2(0(m)) 9}$	$\begin{gathered} 1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 \frac{\left(\delta_{1}^{\prime}\left(\delta_{1}+1\right)\right.}{2} g^{2} C_{z}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} C_{x}^{2}-4 g \delta_{1} C_{x y}-4 g \delta_{2} C_{y z}\right. \\ \left.+4 g^{2} \delta_{1} \delta_{2} C_{x z}\right) \end{gathered}$
10	$T_{2(0(m)) 10}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 \lambda_{1}^{2} C_{x}^{2}+\lambda_{2}^{2} C_{z}^{2}-2 \lambda_{1} C_{x y}+2 \lambda_{2} C_{y z}-2 \lambda_{1} \lambda_{2} C_{x z}\right)$
11	$T_{2(0(m)) 11}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 \lambda_{1}^{2} g^{2} C_{z}^{2}+g^{2} \lambda_{2}^{2} C_{x}^{2}-4 g \lambda_{1} C_{x y}-4 g \lambda_{2} C_{y z}+4 g^{2} \lambda_{1} \lambda_{2} C_{x z}\right)$
12	$T_{2(0(m)) 12}$	$\begin{aligned} & 1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} \lambda_{1}^{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{2}^{2} C_{z}^{2}-2 \alpha_{1} \lambda_{1} C_{x y}\right. \\ & \left.+2 \alpha_{2} \lambda_{2} C_{y z}-2 \alpha_{1} \alpha_{2} \lambda_{1} \lambda_{2} C_{x z}\right) \end{aligned}$
13	$T_{2(0(m)) 13}$	$\begin{gathered} 1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+\frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} 3 \lambda_{1}^{2} g^{2} C_{x}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{2}^{2} C_{z}^{2}-4 g \lambda_{1} \delta_{1} C_{x y}\right. \\ \left.-4 g \lambda_{2} \delta_{2} C_{y z}+4 g^{2} \delta_{1} \delta_{2} \lambda_{1} \lambda_{2} C_{x z}\right) \end{gathered}$
14	$T_{2(0(m)) 14}$	$1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 \lambda_{a}^{2} g^{2} C_{z}^{2}+g^{2} \lambda_{b}^{2} C_{x}^{2}-4 g \lambda_{a} C_{x y}-4 g \lambda_{b} C_{y z}+4 g^{2} \lambda_{a} \lambda_{b} C_{x z}\right)$
15	$T_{2(0(m)) 15}$	$\begin{gathered} \left.1 / 2 m \bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} \lambda_{a}^{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{a}^{2} C_{z}^{2}-2 \alpha_{1} \lambda_{a} C_{x y}\right. \\ \left.+2 \alpha_{2} \lambda_{a} C_{y z}-2 \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right) \end{gathered}$
16	$T_{2(0(m)) 16}$	$\begin{gathered} 1 / 2 m\left(\bar{Y}^{\text {ERSSe }}\right)^{2}\left(C_{y}^{2}+\frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} 3 \lambda_{a}^{2} g^{2} C_{x}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}-4 g \lambda_{a} \delta_{1} C_{x y}\right. \\ \left.-4 g \lambda_{b} \delta_{2} C_{y z}+4 g^{2} \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} C_{x z}\right) \end{gathered}$

TABLE 5

Members of $T_{2(0(m)) j}, j=1,2, \ldots 16$ with their MSE

S/N	$T_{2(0(m)) j}$	MSE
1	$T_{2(0(m)) 1}$	$\theta\left(\bar{Y}^{\text {ERSS }}\right.$ (m) ${ }^{2}\left(C_{y}^{2}\right)$
2		$\theta\left(\bar{Y}^{E R S S} S_{0(m)}\right)^{2}\left(C_{y}^{2}+C_{x}^{2}-2 C_{x y}\right)$
	$T_{2(0(m))^{2}}$	
3		$\theta\left(\bar{Y}^{E R S S}{ }_{0}(m)\right)^{2}\left(C_{y}^{2}+C_{z}^{2}+2 C_{y z}\right)$
	$T_{2(0(m))^{3}}$	
4		$\theta\left(\bar{Y}^{\left.E R S S_{0(m)}\right)^{2}}\left(C_{y}^{2}+g^{2} C_{x}^{2}+2 g C_{x y}\right)\right.$
	$T_{2(0(m)) 4}$	
5		$\theta\left(\bar{Y}^{\left.E R S S_{0(m)}\right)^{2}}\left(C_{y}^{2}+g^{2} C_{z}^{2}-2 g C_{y z}\right)\right.$
	$T_{2(0(m))^{5}}$	
6		$\theta\left(\bar{Y}^{\left.E R S S_{0(m)}\right)^{2}}\left(C_{y}^{2}+3 C_{x}^{2}+C_{z}^{2}-2 C_{x y}+2 C_{y z}-2 C_{x z}\right)\right.$
	$T_{2(0(m)) 6}$	
7		$\theta\left(\bar{Y}^{E R S S} S_{0(m)}\right)^{2}\left(C_{y}^{2}+3 g^{2} C_{z}^{2}+g^{2} C_{x}^{2}-4 g C_{x y}-4 g C_{y z}+4 g^{2} C_{x z}\right)$
	$T_{2(0(m))^{\prime}}$	
8	$T_{2(0(m)) 8}$	$\theta\left(\bar{Y}^{\left.E R S S_{0(m)}\right)^{2}}\left(C_{y}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} C_{z}^{2}-2 \alpha_{1} C_{x y}+2 \alpha_{2} C_{y z}-2 \alpha_{1} \alpha_{2} C_{x z}\right)\right.$
9	$T_{2(0(m)) 9}$	$\begin{aligned} \theta\left(\bar{Y}^{\left.E R S S_{0(m)}\right)^{2}}(\right. & C_{y}^{2}+3 \frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} g^{2} C_{z}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} C_{x}^{2}-4 g \delta_{1} C_{x y}-4 g \delta_{2} C_{y z} \\ & \left.+4 g^{2} \delta_{1} \delta_{2} C_{x z}\right) \end{aligned}$
10		$\theta\left(\bar{Y}^{E R S S} S_{0(m)}\right)^{2}\left(C_{y}^{2}+3 \lambda_{1}^{2} C_{x}^{2}+\lambda_{2}^{2} C_{z}^{2}-2 \lambda_{1} C_{x y}+2 \lambda_{2} C_{y z}-2 \lambda_{1} \lambda_{2} C_{x z}\right)$
11	$T_{2(0(m)) 10}$	
	$T_{2(0(m)) 11}$	$)^{2}\left(C_{y}^{2}+3 \lambda_{1}^{2} g^{2} C_{z}^{2}+g^{2} \lambda_{2}^{2} C_{x}^{2}-4 g \lambda_{1} C_{x y}-4 g \lambda_{2} C_{z}\right.$
12	$T_{2(0(m)) 12}$	$\theta\left(\overline { Y } ^ { E R S S _ { 0 (m) }) ^ { 2 } } \left(C_{y}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} \lambda_{1}^{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{2}^{2} C_{z}^{2}-2 \alpha_{1} \lambda_{1} C_{x y}+2 \alpha_{2} \lambda_{2} C_{y z}\right.\right.$
13	$T_{2(0(m)) 13}$	$\begin{gathered} \theta\left(\overline { Y } ^ { E R S S _ { 0 (m) }) ^ { 2 } } \left(C_{y}^{2}+\frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} 3 \lambda_{1}^{2} g^{2} C_{x}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{2}^{2} C_{z}^{2}-4 g \lambda_{1} \delta_{1} C_{x y}\right.\right. \\ \\ \left.-4 g \lambda_{2} \delta_{2} C_{y z}+4 g^{2} \delta_{1} \delta_{2} \lambda_{1} \lambda_{2} C_{x z}\right) \end{gathered}$
14	$T_{2(0(m)) 14}$	$\theta\left(\bar{Y}^{E R S S} S_{0(m)}\right)^{2}\left(C_{y}^{2}+3 \lambda_{a}^{2} g^{2} C_{z}^{2}+g^{2} \lambda_{b}^{2} C_{x}^{2}-4 g \lambda_{a} C_{x y}-4 g \lambda_{b} C_{y z}+4 g^{2} \lambda_{a} \lambda_{b} C_{x z}\right)$
15	$T_{2(0(m)) 15}$	$\begin{aligned} \theta\left(\bar{Y}^{E R S S} S_{0(m)}\right)^{2} & \left(C_{y}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} \lambda_{a}^{2} C_{x}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{a}^{2} C_{z}^{2}-2 \alpha_{1} \lambda_{a} C_{x y}+2 \alpha_{2} \lambda_{a} C_{y z}\right. \\ & \left.-2 \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{x z}\right) \end{aligned}$
16	$T_{2(0(m)) 16}$	$\begin{gathered} \theta\left(\bar{Y}^{E R S S} S_{o(m)}\right)^{2}\left(C_{y}^{2}+\frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} 3 \lambda_{a}^{2} g^{2} C_{x}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{b}^{2} C_{z}^{2}-4 g \lambda_{a} \delta_{1} C_{x y}\right. \\ \left.-4 g \lambda_{b} \delta_{2} C_{y z}+4 g^{2} \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} C_{x z}\right) \end{gathered}$

TABLE 6
Members of $T_{2 S j}, j=1,2, \ldots 16$ with their MSE

S/N	$T_{2 S j}$	MSE
1	$T_{2 S 1}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}\right)$
2	$T_{2 S 2}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+C_{1}^{2}-2 C_{10}\right)$
3	$T_{2 S 3}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+C_{2}^{2}+2 C_{20}\right)$
4	$T_{2 S 4}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+g^{2} C_{1}^{2}+2 g C_{10}\right)$
5	$T_{2 S 5}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+g^{2} C_{2}^{2}-2 g C_{20}\right)$
6	$T_{2 S 6}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+3 C_{1}^{2}+C_{2}^{2}-2 C_{10}+2 C_{20}-2 C_{21}\right)$
7	$T_{2 S 7}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+g^{2} C_{2}^{2}+3 g^{2} C_{1}^{2}-4 g C_{10}-4 g C_{y z}+4 g^{2} C_{x z}\right)$
8	$T_{2 S 8}$	$\begin{aligned} \left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2} & \left(C_{0}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} C_{1}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} C_{2}^{2}-2 \alpha_{1} C_{10}+2 \alpha_{2} C_{20}\right. \\ & \left.-2 \alpha_{1} \alpha_{2} C_{21}\right) \end{aligned}$
9	$T_{2 S 9}$	$\begin{aligned} \left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2} & \left(C_{0}^{2}+3 \frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} g^{2} C_{1}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} C_{2}^{2}-4 g \delta_{1} C_{10}-4 g \delta_{2} C_{20}\right. \\ & \left.+4 g^{2} \delta_{1} \delta_{2} C_{21}\right) \end{aligned}$
10	$T_{2 S 10}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+3 \lambda_{1}^{2} C_{1}^{2}+\lambda_{2}^{2} C_{2}^{2}-2 \lambda_{1} C_{10}+2 \lambda_{2} C_{20}-2 \lambda_{1} \lambda_{2} C_{21}\right)$
11	$T_{2 S 11}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+g^{2} \lambda_{2}^{2} C_{2}^{2}+3 \lambda_{1}^{2} g^{2} C_{1}^{2}-4 g \lambda_{1} C_{10}-4 g \lambda_{2} C_{21}+4 g^{2} \lambda_{1} \lambda_{2} C_{21}\right)$
12	$T_{2 S 12}$	$\begin{gathered} \left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} \lambda_{1}^{2} C_{1}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{2}^{2} C_{2}^{2}-2 \alpha_{1} \lambda_{1} C_{10}+2 \alpha_{2} \lambda_{2} C_{20}\right. \\ \left.-2 \alpha_{1} \alpha_{2} \lambda_{1} \lambda_{2} C_{21}\right) \end{gathered}$
13	$T_{2 S 13}$	$\begin{gathered} \left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+\frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} 3 \lambda_{1}^{2} g^{2} C_{1}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{2}^{2} C_{2}^{2}-4 g \lambda_{1} \delta_{1} C_{10}\right. \\ \left.-4 g \lambda_{2} \delta_{2} C_{20}+4 g^{2} \delta_{1} \delta_{2} \lambda_{1} \lambda_{2} C_{21}\right) \end{gathered}$
14	$T_{2 S 14}$	$\left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+g^{2} \lambda_{b}^{2} C_{2}^{2}+3 \lambda_{a}^{2} g^{2} C_{1}^{2}-4 g \lambda_{a} C_{10}-4 g \lambda_{b} C_{20}+4 g^{2} \lambda_{a} \lambda_{b} C_{21}\right)$
15	$T_{2 S 15}$	$\begin{aligned} \left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2} & \left(C_{0}^{2}+3 \frac{\left(\alpha_{1}\left(\alpha_{1}+1\right)\right.}{2} \lambda_{a}^{2} C_{1}^{2}+\frac{\alpha_{2}\left(\alpha_{2}-1\right)}{2} \lambda_{a}^{2} C_{2}^{2}-2 \alpha_{1} \lambda_{a} C_{10}+2 \alpha_{2} \lambda_{a} C_{20}\right. \\ & \left.-2 \alpha_{1} \alpha_{2} \lambda_{a} \lambda_{b} C_{21}\right) \end{aligned}$
16	$T_{2 S 16}$	$\begin{gathered} \left(\frac{1-f}{m}\right)\left(\bar{Y}^{S R S}\right)^{2}\left(C_{0}^{2}+3 \frac{\left(\delta_{1}\left(\delta_{1}+1\right)\right.}{2} \lambda_{a}^{2} g^{2} C_{1}^{2}+\frac{\delta_{2}\left(\delta_{2}-1\right)}{2} g^{2} \lambda_{b}^{2} C_{2}^{2}-4 g \lambda_{a} \delta_{1} C_{10}\right. \\ \left.-4 g \lambda_{b} \delta_{2} C_{20}+4 g^{2} \delta_{1} \delta_{2} \lambda_{a} \lambda_{b} C_{21}\right) \end{gathered}$

3.4 Efficiency comparison

Let $\operatorname{MSE}\left(T_{2 E j}\right)_{o p t}, \operatorname{MSE}\left(T_{2[0(m)] j}\right)_{o p t}$, and $\operatorname{MSE}\left(T_{2 S j}\right)_{o p t}$ be the Mean Square Errors (MSEs) of $T_{2 E j}, T_{2[0(m)] j}, T_{2 S j}$, under ERSS for ERSSe case, e : is even, and $E R S S_{0(m)}$ case, $0(m)$ is median odd, and that of the estimator proposed under SRS respectively.
(i) $\operatorname{MSE}\left(T_{2 E j}\right)_{o p t}$ is more efficient than $\operatorname{MSE}\left(T_{2 S j}\right)_{o p t}$ under optimal condition if,

$$
\begin{gather*}
\frac{\left(\bar{Y}^{E R S S_{e}}\right)^{2}\left[1+\frac{\left(2 D_{3} D_{4} D_{5}-D_{2} D_{4}^{2}-D_{1} D_{5}^{2}\right)}{\left(D_{1} D_{2}-D_{3}^{2}\right)}\right]}{(\bar{Y} S R S)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5}-L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]}<1 \text { or } \frac{1}{\frac{\left(\bar{Y}^{E R S S} S_{e}\right)^{2}\left[1+\frac{\left(2 D_{3} D_{4} D_{5}-D_{2} D_{4}^{2}-D_{1} D_{5}^{2}\right)}{\left(D_{1} D_{2}-D_{3}^{2}\right)}\right]}{\left(\bar{Y}^{S R S}\right)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5} L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]}}>1 \\
\text { for } j=1 \text { to } 16 \tag{59}
\end{gather*}
$$

(ii) $\operatorname{MSE}\left(T_{2[0(m)] j}\right)_{o p t}$ is more efficient than $\operatorname{MSE}\left(T_{2 S j}\right)_{o p t}$ if,

$$
\frac{\left(\bar{Y}^{E R S S}{ }_{o(m)}\right)^{2}\left[1+\frac{\left(2 J_{3} J_{4} J_{5}-J_{2} J_{4}^{2}-J_{1} J_{5}^{2}\right)}{\left(J_{1} J_{2}-J_{3}^{2}\right)}\right]}{(\bar{Y} S R S)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5}-L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]}<1 \text { or } \frac{1}{\frac{\left(\bar{Y}^{\left.E R S S_{o(m)}\right)^{2}}\left[1+\frac{\left(2 J_{3} J_{4} J_{5}-J_{2} J_{4}^{2}-J_{1} J_{5}^{2}\right)}{\left(J_{1} J_{2}-J_{3}^{2}\right)}\right]\right.}{\left(\bar{Y}^{S R S)^{2}}\left[1+\frac{\left(2 L_{3} L_{4} L_{5} L_{2} L_{4}^{3}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]\right.}>1, ~}
$$

for $j=1$ to
(iii) $\operatorname{MSE}\left(T_{2[0(m)] j}\right)_{o p t}$, is most efficient than $\operatorname{MSE}\left(T_{2 E j}\right)_{o p t}$ and $\operatorname{MSE}\left(T_{2 S j}\right)_{o p t}$ if,

$$
\begin{align*}
& \left(\bar{Y}^{E R S S_{o(m)}}\right)^{2}\left[1+\frac{\left(2 J_{3} J_{4} J_{5}-J_{2} J_{4}^{2}-J_{1} J_{5}^{2}\right)}{\left(J_{1} J_{2}-J_{3}^{2}\right)}\right]<\left(\bar{Y}^{E R S S_{e}}\right)^{2}\left[1+\frac{\left(2 D_{3} D_{4} D_{5}-D_{2} D_{4}^{2}-D_{1} D_{5}^{2}\right)}{\left(D_{1} D_{2}-D_{3}^{2}\right)}\right]< \\
& \left(\bar{Y}^{S R S}\right)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5}-L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right] \tag{61}
\end{align*}
$$

(iv) $\operatorname{MSE}\left(T_{2 E j}\right)_{o p t}$ is more efficient than $\operatorname{MSE}\left(T_{2 S j}\right)_{o p t}$ in terms of $P R E$, if

$$
\left.\begin{array}{c}
\frac{\left(\bar{Y}^{E R S} S_{o(m)}\right)^{2}\left[1+\frac{\left(2 J_{3} J_{4} J_{5}-J_{2} J_{4}^{2}-J_{1} J_{5}^{2}\right)}{\left.J_{1} J_{2}-J_{3}^{2}\right)}\right]}{\left(\bar{Y}^{S R S}\right)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5}-L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]} \times 100<100, \text { or } \tag{62}\\
\frac{1}{\frac{\left(\bar{Y}^{E R S S} S_{o(m)}\right)^{2}\left[1+\frac{\left(2 J_{3} J_{4} J_{5}-J_{2} J_{4}^{2}-J_{1} J_{5}^{2}\right)}{\left(J_{1} J_{2}-J_{3}^{2}\right)}\right]}{\left(\bar{Y}^{S R S}\right)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5}-L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]} \times 100>100} \\
\text { for } j=1 \text { to } 16
\end{array}\right\}
$$

(v) $\operatorname{MSE}\left(T_{2[0(m)] j}\right)_{\text {opt }}$ is more efficient than $\operatorname{MSE}\left(T_{2 S j}\right)_{\text {opt }}$ in terms of PRE, if,

$$
\left.\begin{array}{c}
\frac{\left(\bar{Y}^{E R S S_{e}}\right)^{2}\left[1+\frac{\left(2 D_{3} D_{4} D_{5}-D_{2} D_{4}^{2}-D_{1} D_{5}^{2}\right)}{\left(D_{1} D_{2}-D_{3}^{2}\right)}\right]}{(\bar{Y} S R S)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5}-L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]} \times 100<100, \quad \text { or } \tag{63}\\
\frac{1}{\frac{\left(\bar{Y}^{E R S S} S_{e}\right)^{2}\left[1+\frac{\left(2 D_{3} D_{4} D_{5}-D_{2} D_{4}^{2}-D_{1} D_{5}^{2}\right)}{\left(D_{1} D_{2}-D_{3}^{2}\right)}\right]}{(\bar{Y} S R S)^{2}\left[1+\frac{\left(2 L_{3} L_{4} L_{5}-L_{2} L_{4}^{2}-L_{1} L_{5}^{2}\right)}{\left(L_{1} L_{2}-L_{3}^{2}\right)}\right]}} \times 100>100 \\
\text { for } j=1 \text { to } 16
\end{array}\right\}
$$

4.0 Empirical study

To investigate the efficiency of $T_{2 E j}, T_{2[0(m)] j}$ and its members under ERSS over its corresponding counterpart $T_{2 S j}$, based on SRS, and some existing ratio type estimators, we have considered three natural populations data sets. The real-life data sets were obtained from various sources and the description of the population and the values of the required parameters are as given below:

Population I: [Source: Singh (1969)]
Y: Number of females employed,
X: Number of females in service
Z: Number of educated females
$M=61, \quad m=20, \quad \bar{Y}=7.46, \quad \bar{X}=5.31, \quad \bar{Z}=179.00$
$\rho_{x y}=0.7737, \rho_{y z}=-0.2070, \rho_{x z}=-0.0033, C_{y}^{2}=0.5046, C_{x}^{2}=0.5737, C_{z}^{2}=0.0633$
Population II: [Source: Steel and Torrie (1960)]
Y: Log of leaf burn in seconds,
X: Potassium percentage
Z: Chlorine Percentage
$M=30, m=6, \quad \bar{Y}=0.6860, \quad \bar{X}=4.6437, \quad \bar{Z}=0.8077$
$\rho_{x y}=0.1794, \rho_{y z}=-0.4996, \rho_{x z}=0.4074, C_{y}^{2}=0.4803, C_{x}^{2}=0.2295, C_{z}^{2}=0.7493$
Population III: [Source: Khare and Rehman (2015)]
Y: Number of Agricultural labour
X : Area of village hectares
Z: Number of Cultivators in the village $M=96, m=24, \bar{Y}=137.9271, \bar{X}=144.8720, \bar{Z}=185.188, C_{x}=0.8115 \quad, C_{y}=1.3232$, $C_{z}=1.5521 \rho_{x y}=0.786, \rho_{y z}=0.786, \rho_{x z}=0.819$

Fixed values of scalars $\quad \alpha_{1}=0.5, \quad \alpha_{2}=-1, \quad \delta_{1}=-1, \quad \delta_{2}=-0.5$
and setting $\phi_{1}=\phi_{2}=\phi_{3}=0$

TABLE 7
Biases of the members of $T_{2 \mathrm{Ej}}, T_{2(0(\mathrm{~m}) \mathrm{j}}, \mathrm{T}_{2 \mathrm{Sj}}$
ESTIMATORS/POPULATIONS

$T_{2 E j}$					$T_{2(0(m)) j}$			$T_{2 S j}$			
members	I	II	III	members	I	II	III	members	I	II	III
$T_{2 E 1}$	0.00	0.00	0.00	$T_{2(0(m)) 1}$	0.00	0.00	0.00	$T_{2 S 1}$	0.00	0.00	0.00
$T_{2 E 2}$	0.0293567	0.0099838	-0.492794	$T_{2(0(m))^{2}}$	0.0278889	0.0083198	-0.472261	$T_{2 S 2}$	0.0394631	0.0159741	-0.739191
$T_{2 \text { E3 }}$	-0.0001173	0.0096579	2.9641522	$T_{2(0(m))^{3}}$	-0.000111	0.0080482	2.8406458	$T_{2 S 3}$	-0.0001577	0.01545258	4.4462282
$T_{2 E 4}$	-0.037871	-0.000784	-0.795925	$T_{2(0(m)) 4}$	-0.035977	-0.000653	-0.761899	$T_{2 S 4}$	-0.0001577	0.01545258	-1.192537
$T_{2 E 5}$	-0.0124118	-3.6E-06	-0.5847714	$T_{2(0(m))^{5}}$	-0.035977	-0.000653	-0.761899	$T_{2 S 5}$	-0.016685	-0.0000057	-0.877157
$T_{2 E 6}$	0.022575	-0.015454	1.181538	$T_{2(0(m)) 6}$	0.021446	-0.012878	1.132307	$T_{2 S 6}$	0.0303461	-0.024726	1.7723074
$T_{2 E 7}$	-0.04399	-0.00982	-1.00605	$T_{2(0(m)) 7}$	-0.041789	-0.008184	-0.9641348	T_{257}	-0.059132	-0.0157128	-1.509081
$T_{2 E 8}$	0.0442068	0.0537136	1.7576993	$T_{2(0(m)) 8}$	0.0419965	0.447613	1.6844618	$T_{2 S 8}$	0.0594256	0.0859417	2.6365489
$T_{2 E 9}$	-0.040593	-0.004062	-0.475046	$T_{2(0(m)) 9}$	-0.038564	-0.003385	-0.455253	T_{259}	-0.054568	-0.006499	-0.71257
$T_{2 E 10}$	0.006942	-0.056602	1.182753	$T_{2(0(m) 10}$	0.006595	-0.047168	1.133472	$T_{2 S 10}$	0.0093318	-0.0905626	1.7741295
$T_{2 E 11}$	-0.05577	-0.017952	-0.437859	$T_{2(0(m)) 11}$	-0.052981	-0.01496	-0.419615	$T_{2 S 11}$	-0.074969	-0.0287225	-0.656788
$T_{2 E 12}$	0.042483	0.323551	1.729186	$T_{2(o(m) 12}$	-0.040359	0.0269626	1.657137	$T_{2 S 12}$	0.0571089	0.5176816	2.593779
$T_{2 E 13}$	-0.035783	-0.013587	-0.470095	$T_{2(o(m)) 13}$	-0.033994	-0.011323	-0.450508	$T_{2 S 13}$	-0.408102	-0.02174	-0.705143
$T_{2 E 14}$	0.0400154	0.0467684	-0.337717	$T_{2(o(m) 14}$	0.0380146	0.0389737	-0.323645	$T_{2 S 14}$	0.0537912	0.0748295	-0.506575
$T_{2 E 15}$	-0.034503	-0.020938	-0.468869	$T_{2(o(m) 15}$	-0.032778	-0.017448	-0.449332	$T_{2 S 15}$	-0.046381	-0.0335	0.703303
$T_{2 \mathrm{E} 16}$	-0.034503	-0.020938	-0.468869	$T_{2(0(m) 16}$	-0.032778	-0.017448	-0.044332	T_{2516}	-0.046381	-0.0335	0.703303

TABLE 8

Results of Relative biases of $T_{28 j}, T_{2(o(m)) j}, T_{2 S j}, j=1,2.16$ ESTIMATORSPOPULATIONS

$T_{2 E j}$				$T_{2(o(m)) j}$				$T_{2 S j}$			
members	I	II	III	members	I	II	III	members	I	II	III
$T_{2 E 1}$	0.00	0.00	0.00	$T_{2(0(m)) 1}$	0.00	0.00	0.00	$T_{2 S 1}$	0.00	0.00	0.00
$T_{2 E 2}$	0.0039352	0.01455364	-0.0035729	$T_{2(0(m))^{2}}$	0.0037385	0.01212799	-0.003424	$T_{2 S 2}$	0.00529	0.0232859	-0.005359
$T_{2 E 3}$	-1.572E-05	0.01407851	0.02149072	$T_{2(0(m))^{3}}$	-1.493E-05	0.0117321	0.02059527	$T_{2 S 3}$	-2.1148-05	0.0225256	0.0322361
$T_{2 E 4}$	-0.0050765	-0.0011429	-0.0057706	$T_{2(0(m)) 4}$	-0.0048227	-0.0009519	-0.0055239	$T_{2 S 4}$	-2.1148-05	0.0225256	-0.008646
$T_{2 E 5}$	-0.0016638	-5.248E-06	-0.0042397	$T_{2(o(m)) 5}$	-0.0048227	-0.0009519	-0.0055239	$T_{2 S 5}$	-0.0022366	-8.309E-06	-0.00636
$T_{2 E 6}$	0.0030261	-0.0225277	0.00856639	$T_{2(0(m)) 6}$	0.0028748	-0.0187726	0.00820946	$T_{2 S 6}$	0.0040678	-0.0360437	0.0128496
$T_{2 E 7}$	-0.0058968	-0.0143149	-0.0072941	$T_{2(0(m)) 7}$	-0.0056017	-0.0119297	-0.0069902	T_{257}	-0.0079265	-0.022905	-0.010941
$T_{2 E 8}$	0.0059258	0.07829971	0.01274368	$T_{2(0(m)) 8}$	0.0056296	0.65249708	0.0122127	$T_{2 S 8}$	0.0079659	0.1252794	0.0191155
$T_{2 E 9}$	-0.0054414	-0.0059213	-0.0034442	$T_{2(0(m)) 9}$	-0.0051694	-0.0049344	-0.0033007	T_{259}	-0.0073147	-0.0094738	-0.005166
$T_{2 E 10}$	0.0009306	-0.0825102	0.0085752	$T_{2(0(m) 10}$	0.000884	-0.068758	0.00821791	$T_{2 S 10}$	0.0012509	-0.1320155	0.0128628
$T_{2 E 11}$	-0.0074759	-0.0261691	-0.0031746	$T_{2(0(m)) 11}$	-0.007102	-0.0218076	-0.0030423	$T_{2 S 11}$	-0.0100495	-0.0418696	-0.004762
$T_{2 E 12}$	0.0056948	0.47164869	0.01253696	$T_{2(0(m)) 12}$	-0.0054101	0.03930408	0.01201459	$T_{2 S 12}$	0.0076553	0.7546379	0.0188054
$T_{2 E 13}$	-0.0047966	-0.0198061	-0.0034083	$T_{2(0(m) 13}$	-0.0045568	-0.0165058	-0.0032663	$T_{2 S 13}$	-0.0547054	-0.031691	-0.005112
$T_{2 E 14}$	0.005364	0.06817551	-0.0024485	$T_{2(o(m) 14}$	0.0050958	0.05681297	-0.0023465	$T_{2 S 14}$	0.0072106	0.1090809	-0.003673
$T_{2 \text { E15 }}$	-0.0046251	-0.0305219	-0.0033994	$T_{2(0(m) 15}$	-0.0043938	-0.0254344	-0.0032577	$T_{2 S 15}$	-0.0062173	-0.0488338	0.0050991
$T_{2 E 16}$	-0.0046251	-0.0305219	-0.0033994	$T_{2(0(m)) 16}$	-0.0043938	-0.0254344	-0.0003214	$T_{2 S 16}$	-0.0062173	-0.0488338	0.0050991

TABLE 9
MSEs of members of $T_{2 B j}, T_{2(o(m)) j}, T_{2 S j}, j=1,2 . .16$
ESTIMATORS/POPULATIONS

$\left(T_{\text {voin) }}, T_{261}\right)$	0.4499359	0.8333346	0.9583333	$\left(T_{261} \cdot T_{251}\right)$	0.7439024	Q.6249989	0.6666667	$\left(T_{\text {VOM11 }}, T_{215}\right)$	0.70665964	0.52083322	0.6388889
$\left(T_{20(n) 2}, T_{22}\right)$	0.9499833	0.8333318	0.9583333	$\left(T_{2 E 2}, T_{2 S}\right)$	0.7439155	62500125	0.6666667	$\left(T_{\text {rammi }}, 2_{15}\right.$)	0.70670732	5.2083344	0.6388889
$\left(T_{200(1) 3}, T_{263}\right)$	0.95	0.83333339	0.9583333	$\left(T_{283}, T_{293}\right)$	0.439024	0.624999	0.6666667	$\left(T_{20 \mathrm{Mmj}}, T_{\text {ISs }}\right)$	0.70670732	0.52983325	0.6388889
$\left(T_{2 v i(x), ~}, T_{264}\right)$	0.95	0.8333352	0.9883333	$\left(T_{2 E 4}, T_{2 S 4}\right)$	0.7439024	0.625009	0.6666667	$\left(T_{2,0 \mathrm{ma})}, T\right.$	0.70670731	0.520835326	8889
$\left(T_{\text {Vp(iN) }}, T_{265}\right)$	0.9499999	0.8333362	0.9583333	$\left(T_{255}, T_{255}\right)$	02439025	0.624988	0.6666667	$\left(\tau_{20,1 / 1}, T_{255}\right)$	0.70670733	0.50883401	0.6388889
$\left(T_{20 /(\pi) / 6} \cdot T_{266}\right)$	0.95	0.8339334	0.9583333	($T_{2 \text { Rh }}, T_{256}$)	07439024	0.624999	0.6666667		0.50670732	0.52083331	0.6388889
$\left(T_{2 a m i n}, T_{2 E}\right.$)	0.9886881	0.8333335	0.9583333	$\left(T_{267}, T_{257}\right)$	0.7148363	0.6250	0.6666667		0.70670732	0.52083366	0.6388889
$\left(T_{20(\pi) / S}, T_{288}\right)$	0.9500001	0.83333	0.9583334	$\left(T_{288}, T_{258}\right)$	07439024	0.62	0.6	($T_{20 \mathrm{mma}}, T_{258}$)	34	31	89
$\left(T_{2}, \frac{m i n}{}, T_{268}\right)$	0.95	0.8333337	0.9583333	$\left(T_{269}, T_{259}\right)$	0.7439024	0.625	0.6666667	$\left(T_{2(0, \pi \mid j, ~}, T_{239}\right)$	0.70670731	0.52083355	888889
$\left(T_{20 / \mathrm{inil0}} \cdot T_{2610}\right)$	0.95	0.8337759	09583333	($T_{2 \times 10}, T_{3510}$)	0722488	0.6246682	0.6666667	$\left(T_{20 \times 10}, T_{2 S 11}\right)$	0.68699789	0.52083345	89
$\left(T_{2(0,1)}\right)$	0.95	0.8333333	333	$\left(T_{2 E 11}, T_{2 S 11}\right)$	07439024	0.62	0.6666667		0.70670732	0.52083331	0.6388889
	0.449977	0.0833333	0.9583333	$\left(T_{2 E 12}, T_{2512}\right)$	07439024	0.625	0.6808564	$\left(T_{20 \times 0} / 12, T_{\text {SiS12 }}\right)$	0.70670515	0.05208333	0.6524874
$\left(T_{2(0,1) 11}, T_{2013}\right)$	0.95	0.8333335	0.9588333	$\left(T_{2 E 13}, T_{2513}\right)$	0.7439025	0.6249997	0.6666667	$\left(\tau_{200 \times 13}, T_{21313}\right)$	0.70670732	0.52083321	0.6388889
$\left(T_{2(000)} 14, T_{2614}\right)$	0.95	0.8333324	0.9583333	(T_{2514}, T_{2514})	0.7439024	Q6250002	0.6666667	$\left(\tau_{20 \times(0) 4}+T_{2 S 14}\right)$	0.70670732	0.52083295	0.6388889
($T_{20 \mathrm{im}) 15}, T_{2615}$)	95	0.883334	09583339	$\left(T_{2515}, T_{2 S 15}\right)$	0.7439025	0.62500	0.6668667	$\left(T_{2(0 \pi \mid 15}, T_{2 S 15}\right)$	0.70670732	0.5208332 l	0.6388889
$\left(T_{20\|0\| 16}, T_{2016}\right)$	0.950005	0.835771	0.9588333	$\left(T_{2516}, T_{2516}\right)$	0.7439024	0.062499	0.6666667	$\left(T_{20 \times 116}, T_{3516}\right)$	0.70670732	0.52083295	0.6388889

TABLE 11
Percent relative efficiency of members of $T_{2 \Sigma_{j}}, T_{2(o(m)) j}, T_{2 S_{j}}, j=1,2.16$
ESTINATORSPOPULATIONS

	$\operatorname{PRE}\left(T_{2(0(\mathrm{~m}) \mathrm{j}}, T_{2 \mathrm{Ej}}\right)$				$\operatorname{PRE}\left(T_{2 E j}, T_{2 S j}\right)$			$\operatorname{PRE}\left(T_{2(\sigma \mathrm{~m}) \mathrm{j}}, T_{2 S \mathrm{~S}}\right)$			
members	I	II	III	members	I	II	III	members	I	II	III
($T_{20 \text { (ix) } 1,}, T_{251}$)	24.993591	83.333459	95.833333		74.39024	62.499892	66.666667	$T_{\text {S1 }}$)	70.665964	52.0833219	63.888889
$\left(T_{20(\pi) 2}, T_{2 n}\right)$	94.998335	83.3331	95.8333333	($T_{252}, T_{2 S 2}$)	74.391548	625.00125	66.666667	,	70.6707321	52.83344	88889
$\left(T_{20(1) 3)}, T\right.$	95	83.333	95.833	$\left(\mathrm{T}_{283}+\mathrm{T}_{283}\right)$	74.3	62.49999	66.	,	70.6707317	52	859
(15) $4, T_{254}$)	94.999999	83.333523	95.8333	$\left(254, T_{254}\right)$	74.390243	62.500089	66.666668	($T_{2,9 \mathrm{max}}, T_{2 s 4}$)	70.6707306	52.0832255	63.888891
$\left(T_{20 \mathrm{in} / 5}, T_{215}\right)$	9499999	88.33362	95.833	(T_{255}, T_{255})	74.3	62.499865	66.66666?	($T_{20 \mathrm{maj} / \mathrm{j}}, T_{255}$)	70.6707333	52.083	88888
$\left(I_{20(17)} / 6, I_{266}\right)$	95	83.333	95.83	($\mathrm{I}_{26}, \mathrm{~T}_{256}$	74.39	62.499993	66.6	($T_{2 \text { vink }}, T_{28}$)	70.6707315	52,0833306	63.888889
$\left(T_{20(10) 7}, T_{26 I}\right)$	98.862815	83.3333	95.833	(71.483633	62.500026	66.666667)	70.6707317	52.083	63.888
$\left(T_{20(10) 8,8}, T_{288}\right)$	95.000095	83.3	95.	$\left(288, T_{258}\right.$	74.	62.50004	66.		70.670734	52.0833311	63.888888
($T_{20010}, 9, T_{269}$)	94.99999	83	95	$\left(\mathrm{T}_{269}, \mathrm{~T}_{259}\right)$	74.3	62.5	66.666	,	70.6707309	52.0833	. 888
$\left(I_{2(0,0110}, T_{2610}\right)$	94.999999	83.3373	95.833	($\left.T_{2 E 10}, T_{2 S 10}\right)$	72.248	62.496822	66.6668		68.6297895	52.0833451	63.888888
$\left(T_{2 q(M) H 1}, T_{2 f 11}\right)$	95	83.3333	95.8333	($\left.T_{2511}, T_{2511}\right)$	74.3902	62.500001	66.666667	11	70.6707318	52.083	63.888889
	94.999708	8.33333	95.8333	($T_{2 E 12}, T_{2 S 12}$)	74.390	499988	68.085	m12, T_{2}	70.6705149	5.20833	65.248735
$\left(T_{20,(m) 13}, T_{2513}\right)$	94.999999	83.33335	95.88333	($T_{2 E 13}, T_{2 S 13}$)	74390245	62.499973	66.666667	$\left(T_{2,9 \mathrm{~m}, 13}, T_{2}\right.$	70.6707324	52.08332	63.88889
	95.000001	83.3332	95.83333	($T_{2 E 14}, T_{2 S 14}$)	74.390	62.500021	66.6666	($T_{20 \mathrm{Ma\mid} 14}, T_{2 S 4}$)	70.6707321	52.0832	63.8888
	95	833.33334	95.833334	$\left(T_{2 E 15}, T_{2 S 15}\right)$	74.39024	6.25	66.666667		70.6707318	2.083	888
$\left(T_{20 \times 6) 16}, T_{2 F 16}\right)$	95.000005	8835771	95.680399	$\left(T_{2 F 16}, T_{2 S 16}\right)$	74.30024	589.45992	66.666667	($\tau_{\text {2010 ds }}, T_{2316}$)	70.6707316	22.0332288	69.786933

4.1 Simulation study

Simulation was carried out for $T_{2 E j}, T_{2[0(m)] j}, T_{2 S j}$, estimators using two accompanying variables (X, Z), when ranking is performed on Z. Multivariate random observations were generated from a trivariate normal distribution having parameters $\mu_{X}=16, \mu_{Y}=12, \mu_{Z}=20$, $\sigma_{X}^{2}=\sigma_{Y}^{2}=\sigma_{Z}^{2}=1$ and for different values of $\rho_{X Y}$. The correlation coefficients between $(Y$, $Z)$ and (X, Z) are assumed to be $\rho_{Y Z}=0.9$ and $\rho_{X Z}=0.80$ respectively, with different sample sizes $m=3,4,5,6,7,8,9,10$ and $r=1$.

5000 simulations were conducted to estimate the biases, MSEs, R.E, and P.R.E in order to ascertain the veracity of the theoretical underpinnings of this paper and to evaluate the performances of the proposed classes of estimators under ERSS over its corresponding counterparts based on SRS. The result of this simulation is presented in table 12.

TABLE 12

Simulation Results of MSEs, R.E, AND P.R.E of $T_{2 E j}, T_{2(o(m)) j}, T_{2 S j}, j=16$

m							
	$\boldsymbol{T}_{1 E j}$	$\boldsymbol{T}_{1(o(m)) j}$	$T_{1 S_{j}}$	$\begin{gathered} \rho_{x y}=0.90 \\ R E_{1} \\ \hline \end{gathered}$	$R E_{2}$	PRE ${ }_{1}$	PRE ${ }_{2}$
3	1.404262	0.9420067	2.808467	0.50001017	0.33541667	50.0010167	33.5416667
4	1.401955	1.0558315	2.803868	0.50000763	0.3765625	50.0007625	37.65625
5	1.436618	1.1528716	2.8732	0.5000061	0.40125	50.00061	40.125
6	1.397857	1.1677815	2.795686	0.50000508	0.41770833	50.0005083	41.7708333
7	1.416604	1.2167506	2.833182	0.50000436	0.42946429	50.0004357	42.9464286
8	1.459227	1.2790943	2.918433	0.50000381	0.43828125	50.0003813	43.828125
9	1.419665	1.263888	2.839312	0.50000339	0.44513889	50.0003389	44.5138889
10	1.433852	1.2922512	2.867686	0.50000305	0.450625	50.000305	45.0625
m	$\rho_{x y}=0.80$						
3	1.270183	0.8188868	2.539774	0.50011667	0.3224251	50.0116667	32.2425096
4	1.228545	0.920252	2.456661	0.5000875	0.37459469	50.00875	37.4594693
5	1.227174	0.9796272	2.454005	0.50007	0.39919523	50.007	39.919523
6	1.224677	1.0870001	2.449068	0.50005833	0.44384235	50.0058333	44.3842351
7	1.304531	1.0812416	2.6088	0.50005	0.41445932	50.005	41.4459319
8	1.261559	1.106083	2.522897	0.50004375	0.43841782	50.004375	43.841782
9	1.264193	1.1266588	2.52819	0.50003889	0.44563856	50.0038889	44.5638555
10	1.26758	1.1378952	2.534982	0.500035	0.44887698	50.0035	44.8876975
m		$\rho_{x y}=0.75$					
3	1.144056	0.700946	2.376088	0.48148702	0.295	48.148702	29.5
4	1.144025	0.7921737	2.287866	0.50004013	0.34625	50.0040125	34.625
5	1.194183	0.900356	2.388212	0.5000321	0.377	50.00321	37.7
6	1.160379	0.9224521	2.320634	0.50002675	0.3975	50.002675	39.75
7	1.196098	0.9858815	2.392087	0.50002293	0.41214286	50.0022929	41.2142857
8	1.19188	1.0085879	2.383664	0.50002006	0.423125	50.0020063	42.3125
9	1.160928	1.0022322	2.321774	0.50001783	0.43166667	50.0017833	43.1666667
10	1.142525	1.0019625	2.284977	0.50001605	0.4385	50.001605	43.85
m	$\boldsymbol{\rho}_{x y}=0.50$						
3	0.719316	0.503484	1.438526	0.500037	0.35	50.0037017	35
4	0.715929	0.5548144	1.431779	0.500028	0.3875	50.0027763	38.75
5	0.750581	0.6154488	1.501095	0.500022	0.41	50.002221	41
6	0.729493	0.6200463	1.458933	0.500019	0.425	50.0018508	42.5
7	0.740651	0.6454038	1.481255	0.500016	0.43571429	50.0015864	43.5714286
8	0.736514	0.6536383	1.472988	0.500014	0.44375	50.0013881	44.375
9	0.724037	0.6516168	1.448037	0.500012	0.45	50.0012339	45
10	0.728649	0.6630559	1.457266	0.500011	0.455	50.0011105	45.5

5.0 Conclusion

A family of ratio-cum-product estimators of population mean of the study variable Y have been successfully proposed following information on two accompanying variables under ERSS as shown in equations (18) and (19) while keeping track record of the SRS version of the proposed estimators as shown in (20) for the purpose of efficiency comparison. Members of the proposed class of the estimators were obtained by varying the scalars that helps in designing the estimator and were presented in table 1 , table 2 , and table 3 respectively. Their properties such as biases, and MSEs were all derived as can be envisage in equations (28), (44), (51) for biases and (30),(45), (52) for MSEs. The Optimal Mean Square Errors were also derived to the quadratic polynomial form of Taylor's series approximation and presented in (43),(50) and (58) respectively. Theoretical underpinnings and the condition for which the proposed class of estimator would provide an appreciable gain in efficiency over its counterpart estimator were established and shown in (59).(60),(61),(62), and (63). Empirical and simulation studies were conducted to ascertain the veracity of the theoretical underpinnings of the work. From where it was discovered from the results that the proposed family of estimators based on ERSS provided smaller MSEs, R.E, P.R.E, for all values of the correlation coefficients and sample sizes considered in this paper and were therefore adjudged to be more efficient than the corresponding counterpart under SRS. This evidence is presented in table 7 , table 8 , table 9 , table 10 , and table 11.

The efficiency of $\boldsymbol{T}_{\mathbf{2 E j}}, \boldsymbol{T}_{\mathbf{2 (o (m)) j}} \boldsymbol{T}_{\mathbf{2 S j}}$ increases for smaller values of correlation coefficient $\rho_{X Y=+} 0.80$, and +0.75 , and for smaller values of sample size and decreases for the values of the correlation coefficient $\rho_{X Y}= \pm 0.90$ and +0.50 and as the sample size increases in most cases in table 12.

The proposed estimators are approximately unbiased for all cases, correlation coefficients, and sample sizes considered in the simulation study.

The estimator $T_{2(o(m)) j}$ performs better than that of $T_{2 E j}$ and $T_{2 S j}$ for all the values of the correlated coefficient and the samples sizes considered in this paper.

Therefore, the estimators $T_{2(o(m)) j}$ was adjudged to be the most efficient estimators among their brethren $T_{2 E j}, T_{2 S j}$ since it produces the smallest MSEs in all the population, correlation coefficients, and sample sizes considered in this paper. The estimators in question were therefore adjudged to be efficient and provide a better alternative whenever efficiency is required.

REFERENCES

Al-Omari, A. I.(2019). Improved ratio-cum-product estimators of population mean under ERSS and SRS. Academic Press pages 25-42.

Al-Omari, A.I., Jemain, A.A., Ibrahim, K., (2009). New ratio estimators of the mean using simple random sampling and ranked set sampling methods. Rev. Investig. Oper. 30 (2), 97-108.

Ali Asad, Butt M.M., Iqbal K., Hanif , M. \& Zubair M. (2021). Estimation of population by using a generalized family estimators under classical ranked set sampling. Journals of Research in Mathematics \& Statistics volume 8, issues 1.

Abu-Dayyeh, W. A., Samawi, H. M., \& Bani-Hani, L. A. (2002). On distribution function estimation using double ranked set samples with application. Journal of Modern Applied Statistical Methods, 1(2), 443-451.

Al-Nasser, A. D. \& Mustafa, A. B. (2009). Robust extreme ranked set sampling. Journal of Statistical Computation and Simulation, 79(7), 859-867.

Al-Omari, A. I. \& Haq, A. (2012). Improved quality control charts for monitoring the process mean, using double-ranked set sampling methods. Journal of Applied Statistics, 39, 745-763.

Al-Omari, A. I. \& Al-Nasser, A. D. (2012). On the population median estimation using robust extreme ranked set sampling. Monte Carlo Methods and Applications, 18, 109118.

Al-Omari, A. I. \& Al-Saleh, M. F. (2009). Quartile double ranked set sampling for estimating the population mean. Economic Quality Control, 24, 243-253.

Al-Omari, A.I., Jemain, A.A., \& Ibrahim, K., (2009). New ratio estimators of the mean using simple random sampling and ranked set sampling methods. Investigation Operational, 30 (2), 97-108.

Al-Saleh M. F. \& Al-Shrafat K. (2001). Estimation of average milk yield using ranked set sampling. Environ metrics, 12(4),395-399.

Al-Saleh, M.F., \& Al-Kadiri, M., (2000). Double ranked set sampling. Statistical Probability Letter, 48, 205212.

Al-Saleh, M. F. \& Samawi, H. (2010). On estimating the odds using Moving extreme ranked set sampling. Statistical Methodology, 7(2),133-140.

Al-Saleh, M.F., \& Ababneh, A., (2015). Test for accuracy in ranking in moving extreme ranked set sampling. International Journal of Computational Theoretical Statistics, 2, 67-77.

Al-Saleh, M.F., \& Al-Omari, A.I., (2002). Multistage ranked set sampling. J. Stat. Plan. Inference 102, 273-286.

Al-Saleh, M.F., \& Darabseh, M., (2017). Inference on the skew normal distribution using ranked set sampling. International Journal of Computational Theoretical Statistics, 4, 65-76.

Al-Saleh, M.F., \& Samawi, H.M. (2000). On the efficiency of Monte Carlo methods using steady state ranked simulated samples. Communication in Statistics and Simulation Computation, 29, 941-954.

Al-Saleh, M.F., \& Zheng, G., (2002). Estimation of bivariate characteristics using ranked set sampling. Australia N. Z. Journal Statistics, 44, 221-232.

Arnold, B.C., Balakrishman, N., \& Nagaraja, H. N. (1992). A first course in order Statistics. NY: John Wiley \& Sons.

Asad, A., Muhammad, M. B., Kanwal I., Muhammad, H \& Muhammad Z. (2021). Estimation of Population Mean by using a generalized family of estimators under classical ranked set sampling. Research in Mathematics \& Statistics (RSM) 8(1), 1-9.

Dell, T.R., Clutter, J.L., 1972. Ranked set sampling theory with order statistics background, Biometrics, 28. pp. 545_555.

Haq, A., Shabbir, J., (2010). A family of ratio estimators for population mean in extreme ranked set sampling using two auxiliary variables. Sort 34 (1), 45-64.

Imoke J. E., Effanga, E. O, Nja, M. E., John, A. O.(2022). A class of ratio-cum-product estimators of population mean under extreme ranked set sampling(ERSS) and simple random sampling SRS. International Journals of Statistics and Applied Mathematics; 7(2):133-148.

Kaur, A., Patil, G., Sinha, A.K., Taillie, C., 1995. Ranked set sampling an annotated bibliography. Environ. Ecol. Stat. 2, 25-54.

Khare B. B., \& Rehman H.U. (2015). Improved ratio in regression type estimator for population mean using coefficient of variation of the study character in the presence of non-response. International Journals of Technology and Innovations 14, 1-7

McIntyre, G.A., 1952. A method for unbiased selective sampling using ranked sets. Aust. J. Agric. Res. 3, 385-390.

O'zturk, O. \& Wolfe, D. A. (2000). Optimal allocation procedure in ranked set sampling for unimodal and multi-modal distributions. Environmental and Ecological Statistics, 7(4),343-356.

O'zturk, O. (2002). Ranked set sample inference under a symmetry restriction. Journal of Statistical Planning and Inference, 102, 317-336.

Samawi, H.M., Ahmed, M.S., Abu-Dayyeh, W., (1996). Estimating the population mean using extreme ranked set sampling. Biom. J. 38, 577-586.

Singh A. K., Singh, H. P., and Upadhyaya, L. N. (2011). Generalized chain estimator for finite population mean in two phase sampling. Journal of Indian Society of Agricultural Statistics, 54,(3), 370-375.

Singh H. P. and Tailor, R.(2005) Estimation of finite population mean using known correlation coefficient between auxiliary character. Statistica, 65, 4, 407-418.

Singh M. P., (1969). Comparison of some ratio-cum-product estimators. Sankhya, series B, 31, 375-378.

Steel, R. G. D. \& Torrie, J. H. (1960). Principle and procedures of Statistics. McGraw-Hill book Co.

Takahasi, K., Wakimoto, K., 1968. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Ann. Inst. Stat. Math. 20, 1-31.

Vishwakarma, G, K., \& Kumar, M. (2015). A generalized family of dual to ratio-cumproduct estimators of population mean in simple random sampling. Chilean Journal of Statistics, 6(2), 69-79.

Watson. D. J.(1937): The estimation of leaf areas. J. Agricultural sci. 27. 474.

